Verification metrics should be chosen to answer specific questions regarding
the quality of the forecast information. For example, they can identify where errors
or biases exist in the forecasts to guide more effective use of them. The proposed
questions address the accuracy in the forecast information and the
representativeness of the forecast ensembles to indicate forecast uncertainty.
Specifically, these questions are:

Q1: Do the initial conditions in the hindcasts lead to more accurate predictions of
the climate?

Q2: Is the model’s ensemble spread an appropriate representation of forecast
uncertainty on average?

Q3: In the case that the forecast ensemble does offer information on overall forecast
uncertainty, does the forecast-to-forecast variability of the ensemble spread carry
meaningful information?

The first question, regarding whether the initial conditions provide a greater signal
and thus greater accuracy in the predictions, can be addressed using deterministic
metrics. We advocate the use of the mean squared skill score (MSSS) and its
decomposition following Murphy (1988).

The mean squared skill score is based on the mean squared error (MSE):
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where f; and x; are the forecast and observed values at time i=1,n years. The MSE is
always positive unless the forecast identically matches the observations over time.

The general form of a skill score is written for some metric 4 as:
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Here, the subscripts f, r, and p, represent the forecast system under test, the
reference forecast, and the perfect forecast (i.e. MSE=0), respectively. The skill score
is thus a function of the forecast, the reference, and the observations. The mean
squared skill score for the common case where a climatological average for the
period over which the hindcasts are being tested serves as the reference forecast
can be written as:
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This summary metric actually constitutes a set of metrics: (1) the square of the
correlation coefficient, (2) the conditional bias of the forecast, as indicated by the
difference [squared] from unity between the slope of the regression between the
forecast and observations, and (3) the unconditional bias in the forecast,



represented by the difference [squared] between the forecast and observed
climatology. A positive value for the MSSS indicates that the forecast system is more
accurate than the use of a climatological average. In the case of the initialized
hindcast experiments, a more appropriate reference forecast is the set of
uninitialized hindcasts. In this case, the reference forecast changes with the forecast
under test and is likely to have similar biases. The MSSS in this case takes the form:
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Additional terms appear in the MSSS similar to (1)-(3) above, but considering these
reference forecasts. The MSSS here represents the fractional improvement, or
degradation, of the initialized hindcasts over the uninitialized ones. By multiplying
the MSSS of Eqn. 4 by 100, one quantifies the percentage improvement in accuracy
of the initialized hindcasts compared to the uninitialized ones. An example of the
MSSS (Fig. 1) for year 1 annual-mean precipitation hindcasts from the DePreSys
system initialized at the end of years 1960-2005 shows that unconditional and
conditional biases exist in the model, which are quite similar between forecast
design. The correlation coefficient (Fig 1), which is merely the linear association
between the forecast mean and the observations (e.g. Murphy 1988), gives essential
a measure of potential skill in that the translation between the forecast value and
the observed value must consider the biases inherent in the forecasts.

Even as a measure of potential skill the correlation as implemented above,
which is the Pearson’s correlation (e.g. Fig 2a) , is known to be sensitive to outliers.
Thus it may be informative to also consider alternate correlation measures, such as
the Spearman’s R Ranked Correlation (Fig 2b) or the Kendall’s Tau Rank Correlation
(Fig 2c). Thus the wettest or hottest forecasts are expected to lead to the wettest or
hottest observations, even if the linear scaling may not be preserved.

The Spearman’s R Rank Correlation coefficient is essentially the correlation
coefficient of the time series of the ranked data. The observed and forecast vectors X
and F are transformed into their rank in ascending order, Rx;and Rf. When there are
no ties in the ranks, i.e. when there are no identical values in either of the timeseries,
then the correlation can be calculated as:
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Otherwise, when there are ties in the ranked data, the Pearson’s correlation is
calculated using the ranked data, where an averaged rank is given to the repeated
values. The Kendall’s Tau Rank Correlation considers all possible comparisons of
forecast and observation pairs, i.e. (x;f;) vs (x;fj). They are considered concordant if
the rank of both elements agree, that is: x; > x;and f; > f;, or if x; > x; and f; > f; .



Otherwise they are considered discordant. The Kendall Tau coefficient is then
calculated as:
- (# concordant pairs) - (# discordant pairs)

1/2n(n-1)
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In addition to establishing the level of accuracy in the ensemble mean
forecast, one is often interested in quantifying the range of possibilities or
uncertainty about that forecast value. This question requires the use of probabilistic
metrics. The purpose of the probabilistic metric here is not to ascertain skill of the
forecast, however, as that would be largely redundant information to what the
deterministic metrics yielded. Here we pose the question of whether the ensemble
spread in the forecast is, on average, adequate to represent the forecast uncertainty.
Again, a skill score is used to determine the probabilistic quality of the forecast
spread relative to some reference approach. The measure of probabilistic quality is
the continuous ranked probability score (CRPS). The ranked probability score is
commonly used to assess probabilistic forecasts (e.g. Barnston et al. 2010), but is
typically used with categorical forecasts. Since the changing background climate
subverts the usefulness of categorical forecasts, we wish to cast the forecasts in
terms of a continuous, quantitative, analytical distribution with a mean and
standard deviation determined from the forecast ensemble, although clearly both of
these parameters are subject to substantial sampling errors with the small nominal
ensemble sizes requested for CMIP5.

By definition, the CRPS is:
CRPS(f,.x) = [ 7(G(1) - H(x,)) dy )

where G and H represent the cumulative distribution functions of the forecast and
the observations, respectively. Thus the CRPS is very much like the mean squared
error, but in probability space. If one had infinitely confident forecasts (i.e.
probability of 100%) for the observed outcome in every case, the CRPS would be 0.

In this case, where x, represents the observations, the cumulative function H
is the Heavyside function. If the predictive distribution is a Gaussian with mean f
and variance o0?, then it follows that (Gneiting and Raftery, 2007):
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where @ and ¢ represent the probability distribution function (pdf) and cumulative
distribution function (cdf) of a standard Gaussian variable. Given the CRPSs for the

CRPS(N(f,,07).x,) =0,




forecast distribution, and the CRPS; for the reference distribution, the
corresponding skill score can be defined as:

Y CRPS,
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The “forecast” distribution is assumed Gaussian, with the mean given by the
ensemble mean and the variance given by the average ensemble variance (i.e.
averaged over all hindcasts). Since we are only testing the uncertainty in the
forecasts, the mean of the distribution is the same for both the forecast under test
and the reference forecast (i.e. ri = F;). The “reference” distribution has a variance
given by the standard error variance of the hindcasts’ ensemble mean compared to
the observations.

For a given lead time or average of lead times, the observations and the
forecast can be represented as:
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such that the average over all ensemble members, ¢, in any particular year, i, yields
the ensemble mean value, Fi. Note that we have changed notation from fused in the
section on deterministic metrics, which refers to the raw forecast data, to F here,
which implies some degree of bias correction. For the results shown, the forecasts
have been bias corrected appropriate to their experimental design, according to the
recommended guidelines of WCRP (WCRP 2011). However, there may still exist
conditional as well as unconditional biases in the forecast information.

Probabilistic Case 1 (Q2): Is the model’s ensemble spread an appropriate
representation of forecast uncertainty on average?

For the forecast distribution, the variance of the “forecast” distribution would be:
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and for the reference distribution:

DX CE)

o E— (12)



It should be noted that if biases remain in the forecasts, the standard error in the
linear regression between the forecast mean and the observations, ¢, may actually
be larger than the climatological variance of the observations. This is another reason
that forecast data should be used judiciously.

According to our example, the forecast uncertainty using the standard error is
comparable to that using the average spread of the forecast members in many
locations (Fig 3). In some places, however, the standard error leads to better
reliability. These cases likely reflect an under-dispersion of the ensemble members,
a situation that is common in dynamical seasonal forecasts.

Probabilistic Case 2 (Q3): Does the forecast-to-forecast variability of the ensemble
spread carry meaningful information?

Even if the average forecast spread is not a better representation of forecast
uncertainty than the standard error of the forecast mean, there may still be
information contained in the variability of the forecast spread. Such a situation
could be seen if tighter, more confident, forecasts were also more accurate.

Again, the mean of the “forecast” and “reference” distributions has a mean given by
forecast ensemble mean, Fi. The uncertainty for the forecast under test, oy, changes

each year based on the spread of the ensemble members for each particular
forecast. The “reference” distribution has the spread given by the average ensemble

spread, which was defined above as o;,.

We note that there are some locations where the forecast-to-forecast ensemble
spread improves upon the use of an average spread (Fig. 4). Given the rare and
somewhat noisy appearance of these areas, we would conclude rather that the
difference may be related to sampling errors, and it is better to conclude that the
two approaches are comparable. On the other hand since the map is dominantly
indicating negative values, the message is that the use of an average ensemble
spread to indicate forecast uncertainty is the more prudent approach with this
model.
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Figure 1. Mean squared skill score (MSSS) comparing the initialized decadal hindcasts (“forecast”)
against the uninitialized hindcasts (“reference”) for annual mean precipitation of years 2-9,
averaged, for forecasts initialized near the end of the years 1960-2005. Below is the decomposition
of terms in the MSSS for both the “forecast” (left) and “reference” (right) data.
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Figure 2. Different correlation metrics applied to initialized decadal
hindcasts for annual mean precipitation of years 2-9, averaged, for
forecasts initialized near the end of the years 1960-2005.
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Figure 3. The continuous ranked probability skill score (CRPSS, top) comparing the
continuous ranked probability score (CRPS) between the forecast distribution using
the average ensemble spread of the forecasts (middle) against distributions that use
the standard error of the forecast mean (bottom) to represent uncertainty. The
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forecast variable is annual mean precipitation from years 2-9, averaged.
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Figure 4. The continuous ranked probability skill score (CRPSS, top) comparing the
continuous ranked probability score (CRPS) between the forecast distributions
using the forecast-specific ensemble spread (middle) against distributions that use
the average ensemble spread of the forecasts (bottom) to represent uncertainty.
The forecast variable is annual mean precipitation from years 2-9, averaged.



