Size matters: another reason why the Atlantic is saltier than the Pacific

C.S. Jones and Paola Cessi

SCRIPPS INSTITUTION OF OCEANOGRAPHY UNIVERSITY OF CALIFORNIA, SAN DIEGO

Proposed reasons for Atlantic saltiness

The AMOC warms up the N.Atl. increasing evaporation (Warren 83)

The AMOC carries salt from the tropics (Warren 83)

• Orographic blockage of precipitation in the Pacific (Broecker 90, Schmitnner 11)

Precipitation footprint of Atl. extends into Pac. (Schmitt 89, Ferreira 10)

Mixing with Mediterranean Sea (Reid 1979, Warren 1981)

- Low S.Africa latitude favors high-salt transport from Indo-Pac. (Reid 61)
- Pac. has large wind-driven heat transport: no need for MOC (Wang 85)

Many processes involve the MOC: why no Pacific MOC?

The global overturning circulation

- Lower branch of overturning (deep water) sinks in N.Atl. and upwells in ACC region
- The sources of the upper branch (intermediate waters) are all along ACC plus diapycnal upwelling in S.Atl, and S. Indo-Pacific.
- Additional diapycnal cell in N. Pacific isolated from global overturning.

Simplest geometry for Atl. and Indo-Pac: width is only difference

• Two basins + a circumpolar channel with 1° grid

- GM eddies: $\kappa_{\rm GM} = 500 \text{ m}^2 \text{ s}^{-1}$
- Linear equation of state: $b = g\alpha(\theta \theta_{ref}) g\beta(S S_{ref})$
- Vertical diffusivity: $\kappa_{\nu} = 2 \times 10^{-5} \,\mathrm{m^2 s^{-1}}$ + mixed layer
- Depth 4000m, except for 1333m ridge at 0E

Residual Overturning Circulation of two states

- Sinking in the wide basin is obtained by increasing the local salt flux in the north
- Sinking reverts to the narrow basin for slow return to zonally uniform freshwater flux
- Cross-equatorial residual overturning is ~15Sv in both cases regardless of basin width

Surface salt and tracer anomaly in the two states

Zonally averaged

- Salinity is higher in active basin than passive basin north of 40°N (not surprisingly)
- Salinity difference between active basin and passive basin is smaller for wide-sinking despite salinity addition to wide active basin (- -).
- A passive tracer advected with velocity obtained with asymmetric FW flux but forced by symmetric FW flux has higher concentration in narrow basin.

Upper-branch salt and tracer anomaly in the two states

Zonally averaged

- Salinity is higher in active basin than passive basin north of 40°N (not surprisingly)
- Salinity difference between active basin and passive basin is smaller for wide-sinking despite salinity addition to wide active basin (- -).
- A passive tracer advected with velocity obtained with asymmetric FW flux but forced by symmetric FW flux has higher concentration in narrow basin.

Horizontal structure of the flow above b^*

Visualize the 2-d flow integrating $\phi_y = -U + \int^{\infty} \varpi|_{-h} dx$

Narrow basin sinking

Wide basin sinking

Thick contours: 2.5 Sv apart. Colors: 10 Sv apart

Exchange flow originates in SH of passive basin and enters active basin on western boundary

Exchange of tracers (salt) between gyres Upper branch transport without overturning, only gyres + Ekman

- Diffusive exchange transfers salt from subtropics to subpolar gyre (SPG)
- For large *Peclet* the salinity difference jump between SPG and subtropical gyre scales as $\Delta S \sim \mathcal{F}L_y \sqrt{\frac{\beta}{h\kappa\tau_{yy}}} \quad \kappa: \text{diffusivity; } \mathcal{F}: \text{surface salt flux; } \tau: \text{wind-stress}$
- Gyres diffuse salt independently of basin width

Exchange of tracers between gyres - adding the ROC

Upper branch transport with gyres and overturning in NH - active basins

- Narrow basin sinking has almost no closed streamlines recirculating freshwater in SPG
- Higher *Peclet* number in open streamlines for narrow sinking $Pe = \frac{\Psi_N \Delta y}{\kappa L_x}$
- The width of the open-streamlines region can equal the size of the SPG

Advective exchange at inter-gyre boundary due to ROC is more effective in narrow-sinking

Advection diffusion in 2-D of passive salt

Solve the advection diffusion equation on a spherical sector with open boundaries

$$S_{t} + \mathbf{v} \cdot \nabla S = \frac{\mathcal{F}}{H} + \kappa_{GM} \nabla^{2} S$$
BC at entry: $S = 0$
BC elsewhere: $\kappa_{GM} \nabla S \cdot \hat{\mathbf{n}} = 0$
Wide-basin sinking
Transport(Sv)
$$Marrow-basin sinking Transport(Sv)
$$Mide-basin sinking Transport(Sv)
= 0$$

$$Mide-basin sinking Transport(Sv)
= 0$$$$

 $\mathbf{v} = \mathsf{Barotropic}$ wind-driven gyres + 15 SV of western boundary through-flow (ROC)

Latitude

Vertically and zonally averaged salinity

In the 2-D advection-diffusion solution the sinking region is fresher for wide-sinking, as in the full 3-D solution. Salinity feedback not as effective.

Other processes must be at work to prefer narrow-sinking, associated with up/ downwelling, neglected in the 2-D approach.

Conclusions

•

- Symmetrically forced two basins + channel has sinking in narrow basin
 - Wide-basin sinking can be coerced by asymmetric salt flux
 - Total residual sinking is the same regardless of sinking location
 - Sinking is preferred in narrow basin due to salt distribution
- Interplay ROC/ wind-driven gyres is crucial to salt distribution in NH
- Gyres trap salt which ROC transfers more efficiently in narrow basins