

IMPACT OF THE BLOB ON THE NORTHEAST PACIFIC OCEAN BIOGEOCHEMISTRY AND ECOSYSTEMS

ISAO

Samantha Siedlecki

Eric Bjorkstedt, Richard Feely, Adrienne Sutton, Jessica Cross, & Jan Newton

September, 2014

THE IMPORTANCE OF TEMPERATURE TO CHEMISTRY AND BIOTA IN THE OCEAN

- Solubility of gases (like CO₂ and oxygen) decreases with increasing temperature warm water holds less gas
- Stratification of the water column changes with temperature, which alters the vertical exchange of nutrients, oxygen, and carbon throughout
- Temperature defines habitats, cues reproduction, and influences metabolism, life cycles, and behavior

THE IMPORTANCE OF TEMPERATURE TO CHEMISTRY IN THE OCEAN

Sediment

OPEN OCEAN RESPONSE PCO₂ HIGHER AT THE SURFACE IN "THE BLOB"

COASTAL OCEAN RESPONSE: STRATIFICATION CHANGES ALTER UPWELLING

Coastal Processes That Influence BOTH Oxygen and Carbon Dynamics

COASTAL OCEAN CARBON RESPONSE TO "THE BLOB"

COASTAL OCEAN RESPONSE: STRATIFICATION CHANGES ALTER UPWELLING

COASTAL OCEAN RESPONSE: LESS CORROSIVE CONDITIONS IN GOA

COASTAL OCEAN RESPONSE: LOW CHL IN 2014 AND LATE 2015

STATE OF THE CALIFORNIA CURRENT CalCOFI Rep., Vol. 56, 2015

COASTAL OCEAN RESPONSE: TOXIC ALGAE

for more information: https://coastalscience.noaa.gov/news/habs/california-ocean-protection-council-briefed-west-coast-hab-impacts/

West Coast HAB Bloom Impacts, 2015: Kudela and Trainer, unpublished

COASTAL OCEAN RESPONSE: CHANGE IN COPEPOD SPECIES

Fig. 4 The anomaly of copepod species richness (i.e., the number of species in a sample) at a station 5 miles (8 km) off the coast of Oregon along the Newport Hydrographic Line. The averaging period is 1996–2014. The horizontal blue line indicates a + 5 species anomaly, one that is commonly seen during the positive phase of the Pacific Decadal Oscillation (PDO) and El Niño events. Note that the peak anomaly of >10 species was seen in May 2015 in association with the Blob. The November 2015 sample (- 2 species anomaly) contained the 'normal' number of species seen during winter.

Peterson et al., 2016

Unprecedented Mass Mortality Event (~100,000 dead Cassin's Auklets)

Figure 23. Density of eggs of sardine (blue), anchovy (green), and jack mackerel (red) collected with the continuous underway fish egg sampler (CUFES) overlaid on satellite sea surface temperatures (°C) derived from a monthly composite of April Pathfinder 5.5-km resolution (2000–08) or AVHRR 1.4 km resolution (2009–15) imagery. Ship track is shown by the black line.

COASTAL OCEAN RESPONSE: DECLINE IN PELAGIC FORAGE FISH

sampler (CUFES) overlaid on satellite sea surface temperatures (°C) derived from a monthly composite of April Pathfinder 5.5-km resolution (2000–08) or AVHRR 1.4 km resolution (2009–15) imagery. Ship track is shown by the black line.

COASTAL OCEAN RESPONSE: DECLINE IN PELAGIC FORAGE FISH

Biogeographic anomalies- warm water species found in Gulf of Alaska!

CONCLUSIONS

- ➤ The Blob had major effects beyond temperature
- Open ocean response differed from the coastal ocean response

- Blob could have altered a region of the central Pacific from a sink to a source for carbon to the atmosphere
- Blob brought warm, high oxygen, low carbon water to the coastal regions of the CCS and GOA - possibly by changing the upwelling structure.
- Ecosystems shifted northward, HAB dominated massive phytoplankton bloom.
- ► Lasting impacts still being observed and determined

COASTAL OCEAN RESPONSE: INCREASE IN SQUID

hausiids

OA and Hypoxia West Coast Observing Network - Summary from West Coast OAH Science Panel

The Pacific Coast Collaborative and the State of California have requested a strategic framework for monitoring that will provide rigorous decisionsupport to policy-makers and managers at a west coast, regional scale.

A fully-realized OAH monitoring network will have the capability to:

- track changes in physical conditions (e.g., salinity and temperature),
- water chemistry (e.g., oxygen, pH, pCO₂, aragonite and calcite saturation states),
- and biological processes that can modulate changes in chemistry (e.g., production and remineralization rates, species distributions, predatorprey relationships, biogeochemical responses).