Modulation of Ocean Dynamics by (Sub)Mesoscale Ocean-Wave-Atmosphere Interactions: Current Knowledge and Limitations

L. Renault, Mesoscale and Frontal-Scale Air-Sea Interactions Workshop, 06/03/2023

Strong Influence on the Atmosphere and the Ocean

Thermal Feedback, here correlation between wind speed and SST anomalies with spatial high-pass filtering (from radiometry and scatterometry)

Current Feedback, here sinks of energy from mesoscale eddies to the atmosphere

Wave Feedbacks, a missing piece ?

I won't focus on air-sea-land ...

Mesoscale Thermal Feedback: First pathway via Wind Anomalies

Wind and Stress are modulated by SST anomalies and gradients

Modulation of wind and stress observed by satellite

First Pathway via Wind Anomalies has a Weak Impact on the Ocean Dynamics

Ekman Pumping in the ocean that impact eddy propagation But generally weak effect on the EKE (Seo et al., 2016)

Confirmed by estimating the resulting baroclinic instability → no effect

No significant effect on the exchange of energy between eddies and atmosphere

Only TFB $\langle w'b' \rangle \sim 0$ and $\langle u'\tau' \rangle \sim 0$

Mesoscale Thermal Feedback: Second pathway via Surface Heat Fluxes

Correlation between Turbulent Heat Flux and SST anomalies

Mesoscale Thermal Feedback: Second pathway via Surface Heat Fluxes

Correlation between Turbulent Heat Flux and SST anomalies

Transfer of Potential Energy from Mesoscale Eddies to the Atmosphere

TFB Induced Heat Fluxes can cause a Damping of the EKE

Correlation between Turbulent Heat Flux and SST anomalies

Reduction of baroclinic conversion of energy

Transfer of Potential Energy from Mesoscale Eddies to the Atmosphere

Ma et al. (2016): damping of EKE by ~10%
Seo et al., (2016): no impact

TFB Induced Heat Fluxes can cause a Damping of the EKE

Correlation between Turbulent Heat Flux and SST anomalies

Reduction of baroclinic conversion of energy

Strong dependance on the spatial filter uses when sending the SST to the atmosphere

Transfer of Potential Energy from Mesoscale Eddies to the Atmosphere

No Filter

~1000 km ~300 km

Enhanced Process at Submesoscale but partly Balanced by Windwork

Ucho Farias et al., in preparation

In Blue, simulation with submesoscale Thermal Feedback In Red, without submesoscale **Thermal Feedback**

Observations are missing at those scales! More information on Igor's Poster !

Snapshot of Surface Vorticity from a 500 m coupled simulation

Main Effect of (sub)mesoscale Current Feedback is a Sink of Energy from Eddies to the Atmosphere

Bulk formula for surface wind stress:

$$\tau = \rho C_D |U_a - U_o|^2$$

usually approximated as

$$\tau \approx \tau_a = \rho C_D |U_a|^2$$

More generally, for $U_o \ll U_a$

$$\tau = \tau_a + \tau'$$

$$\tau' \approx s_\tau U_o, \quad s_\tau \propto - |U_a|$$

Eddy wind work done the ocean:

$$FeKe = \langle \tau \cdot U_o \rangle \approx s_\tau U_o^2 \propto -|U_a|U_o^2 < 0$$

=> oceanic energy loss and atmospheric gain vis a vis a resting ocean.

 \rightarrow Global Sinks of Energy \rightarrow The Ocean drags the Atmosphere

This Sink of Energy is Present at All Scales !

It causes the Eddy Killing Process a Damping of Mesoscale Eddies

- 25% Gulf of Mexico (Larrañaga et al., 2022)

Also present at Submesoscale, but balanced by more Baroclinic Conversion caused by Ekman Pumping

Reduction of SKE by ~15%

An Upscaling Impact: Stabilization of Western Boundary Current

Reduction of the Eddy-Mean Flow Interaction (the Inverse Cascade of Energy)

An Upscaling Impact: Stabilization of Western Boundary Current

Reduction of the Eddy-Mean Flow Interaction (the Inverse Cascade of Energy)

Path of the Gulf Stream

An Upscaling Impact: Stabilization of Western Boundary Current

Reduction of the Eddy-Mean Flow Interaction (the Inverse Cascade of Energy)

Path of the Gulf Stream

! Indirect Impact on atmosphere but not the focus of this talk

Difference of SST indirectly caused by Current Feedback

Renault et al., 2023, under review

See al Seo 2017, Renault et al., 2017, Seo et al., 2022

Role of the Surface Gravity Waves ?

Dx=30m, with and without wave forcing

Impact on submesoscale currents through vortex force

Impact on the atmosphere and retroaction on the Ocean?

Impact at Mesoscale?

What are we Missing, What do We Need ?

• <u>Surface current, temperature, wind at the same time and same scales</u> \checkmark Heat fluxes approximation without the knowledge of total surface current ✓ Windwork at submesoscale, tidal scale, mesoscale, etc ✓ Disentangle TFB and CFB effect ✓ EKE damping and subsequent reduction of cascade of energy ✓ Not only geostrophic current but also total and over the Equatorial region Eddy Killing, Cascade of Energy, etc

✓ Need to revisit bulk flux formula, validity at fine-scale/HF, waves? Coupled models often have an inconsistency between the atmosphere and wave models bulk formulas Submesoscale and Wave coupling need more studies ✓ Climate Impact

• <u>Modeling</u>:

Need Surface Currents, and Surface Stress

Large Uncertainties in the surface stress response because of smoothness and non-coherent observations (AVISO and QuikSCAT).

Surface Stress Curl

Wind Response is unknown from the obs., we need to know the surface current coherently with the stress

Surface Current Vorticity and 10-m Wind Curl

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

Importance of having a good enough estimate:

- Drive Windwork ightarrow
- Force an Ocean Model (e.g., OMIP)
- Local to Large-Scale Impact
- No information over Equator

Need SST, Surface Currents, and Surface Stress

Coupling Coefficient TFB overestimated, see also Luna's poster

Error of 10-15% because we don't know the surface current

