

Sub-mesoscale wind-front interactions: The combined impact of thermal and current feedback

Yue (Luna) Bai, Andy Thompson, Bia Villas Boas, Patrice Klein, Hector Torres

Mesoscale and Frontal-Scale Air-Sea Interactions Workshop March 6th, 2023 @ Boulder, CO

Introduction - why wind-front interactions?

Figure from Chelton and Xie, 2010

Yue (Luna), Andy, Bia, Patrice, Hector

Introduction - why *joint impact of* wind-front interactions?

Figure from Renault et al., 2016

Yue (Luna), Andy, Bia, Patrice, Hector

Introduction - why *sub-mesoscale* wind-front interactions?

Figure from Strobach et al., 2022

Yue (Luna), Andy, Bia, Patrice, Hector

1-D thermal feedback

Focus and Goals

High-frequency submesoscale wind-front interactions

Yue (Luna), Andy, Bia, Patrice, Hector

JJA, 2012

- Longitude [°E]
 - Joint (non-linear) impact of thermal and current feedback on wind stress curl

Method - high resolution global air-sea coupled model GEOS/MIT Coupled Simulation (c1440 - Ilc 2160)

Latitude-Longitude-Cap 2160

Ocean part:

- hourly output
- 2-4 km (1/24°) horizontal resolution
- Other global coupled model: ~0.25 or 1°

Atmosphere part:

• 6 km horizontal resolution

6

Results - joint impact of thermal and current feedback

2-D feedback

Yue (Luna), Andy, Bia, Patrice, Hector

current feedback: thermal feedback:

something

crosswind sst gradient

2-D current + thermal feedbacks

Results - joint impact of thermal and current feedback

2-D feedback

Yue (Luna), Andy, Bia, Patrice, Hector

- Current and thermal feedback work in tandem to modify $\nabla \times \tau$, ~20 times stronger than in previous mesoscale studies
- Strong potential to affect ocean vertical velocity

Results - joint impact of thermal and current feedback

2-D feedback

Yue (Luna), Andy, Bia, Patrice, Hector

- Sub-mesoscale ocean divergence is negatively correlated with wind stress divergence
- Strong potential to affect vertical motions in the atmospheric boundary layer

Results - wind stress curl reconstruction

- wind stress curl ~ α vorticity + β crosswind sst gradient
- 4 ways of reconstruction and coefficient calculation:

Yue (Luna), Andy, Bia, Patrice, Hector

limitation: only wind stress curl induced by wind-front interactions

1-D C+T (linear sum)

Results - wind stress curl reconstruction

simulated wind stress curl (truth):

July 8th, 20:00

Yue (Luna), Andy, Bia, Patrice, Hector

Longitude [° E]

1-D thermal $(\alpha = 0)$

10km]

N

-68 -66 Longitude [°E]

1-D C+T (linear sum)

–68 –66 Longitude [°E]

Results - wind stress curl reconstruction

Percentage of true wind stress curl explained

Yue (Luna), Andy, Bia, Patrice, Hector

Root-mean square error with true wind stress curl,

1-D reconstructions / 2-D

Yue (Luna) Andy, Bia, Patrice, Hector

Yue (Luna) Andy, Bia, Patrice, Hector

No surprise, α negatively correlated with wind speed (e.g. Renault et al., 2017)

Yue (Luna), Andy, Bia, Patrice, Hector

time scale correlation

time scale correlation **U**

Yue (Luna), Andy, Bia, Patrice, Hector

- high-frequency variations in β -> air-sea T difference
- slow and lagged downward momentum transfer in ABL -> wind speed

Results - summary

- Sub-mesoscale wind-front interactions are ~20 times stronger than at mesoscale
- Current (vorticity/divergence) and thermal (sst gradients) feedbacks have joint impacts on wind stress curl/divergence; both are required to explain anomalous values in wind stress fields
- Relative contribution of current and thermal feedback are determined by wind speed and air-sea temperature difference

Yue (Luna), Andy, Bia, Patrice, Hector

Supplementary materials

Supplementary materials

Yue (Luna), Andy, Bia, Patrice, Hector

SI - wind stress curl reconstruction

simulated wind stress curl (truth):

July 27th, 03:00

Yue (Luna), Andy, Bia, Patrice, Hector

1-D C+T (linear sum)

ybbai@caltech.edu

SI - wind stress curl reconstruction

Percentage of true wind stress curl explained

Yue (Luna), Andy, Bia, Patrice, Hector

Root-mean square error with true wind stress curl,

1-D reconstructions / 2-D

SI - wind stress curl reconstruction

Yue (Luna), Andy, Bia, Patrice, Hector

SI - conditional mean plots in quiescent region

Yue (Luna), Andy, Bia, Patrice, Hector

SI - thermal feedback

 $\nabla \times \tau$ impacts ocean surface layer

Yue (Luna), Andy, Bia, Patrice, Hector

SI - current feedback

Yue (Luna), Andy, Bia, Patrice, Hector

current vorticity ζ

wind stress curl $\nabla \times \tau$

ybbai@caltech.edu

Jrl

SI - current feedback

current divergence

Yue (Luna), Andy, Bia, Patrice, Hector

wind stress

 U_{o}

wind stress convergence - $\nabla \cdot \tau$

