

Mesoscale air-sea variability captured by uncrewed surface vehicles in the tropical Pacific

Samantha M. Wills¹ Meghan F. Cronin² and Dongxiao Zhang¹

¹University of Washington, CICOES, Seattle WA ²NOAA Pacific Marine Environmental Laboratory, Seattle WA

Captured by SD 1066's onboard camera in the Tropical Pacific Ocean

Atmospheric Cold Pool

- "A cold air mass that flows outward beneath intense thunderstorms" (e.g., Charba 1974)
- Important for triggering and organizing convective activity over ocean
- Traditionally observed by weather stations, radar, and radiosondes over land
- Limited in situ and surface-based observations over remote tropical Pacific
 - **Environmental Air**

Ocean surface

Capturing subgrid/subpixel variability

IMERG Precipitation Product (shading): 30-min, 0.1° x 0.1° resolution **ERA5 Wind Speed and Direction** (blue vectors): hourly, 0.25° x 0.25° resolution

Wills et al. 2022 (in review)

Capturing subgrid/subpixel variability

Adaptive Mesoscale Network

Brock et al. (1995): The Oklahoma mesonet: A technical overview.

Adaptive drone network to address range of tropical phenomena

Tropical Pacific Observing System (TPOS)

Proposed Hydrographic Surveys

- Like Go-SHIP, "Go-USV" missions will monitor multidisciplinary variables in pairs along repeat sections.
- Go-USV air-sea interaction observations will coordinate with underway TPOS ship measurements (as available) and leverage TAO buoys to increase sampling density in otherwise data sparse ocean regions.

Central and Eastern Tropical Pacific Pilot Studies

Cold pool events identified as **surface air temperature drops** of **1.5°C over a 10-minute period**

How do atmospheric cold pools influence air-sea heat fluxes?

Results based on 276 qualifying cold pool events

Bulk latent heat flux:

$$Q_L = \rho L_e C_E U_r \bigtriangleup q$$

Bulk sensible heat flux: $Q_S = \rho c_p C_H U_r \bigtriangleup \theta$

Wills et al. 2022 (in review)

COARE Algorithm Gustiness Parameter

 COARE 3.5 algorithm applies a "gustiness" parameter, u_g, that relates the scalar- and vector-averaged winds:

- u_g^2 reflects the **missing wind variance** over a select time period
- Tuned to hourly average values that accounts for the underestimation of air-sea fluxes associated with boundary layer large eddies within low-wind regimes during fair weather conditions (e.g., Edson et al. 2013; Fairall et al. 1996, 2003)
- Able to calculate missing wind variance associated with convective cold pools from high-resolution Saildrone measurements

COARE Algorithm Gustiness Parameter

 COARE 3.5 algorithm applies a "gustiness" parameter, u_g, that relates the scalar- and vector-averaged winds:

COARE output v. obs: Missing Wind Variance

Bulk Heat Flux Estimates: 10-min v. 1-hr Input

Challenges/Opportunities

- Limited availability of high-resolution in situ observations over remote ocean regions to
 - Measure the marine boundary layer beyond the near-surface
 - Validate findings from previous modeling experiments and satellite measurements
 - Compare bulk flux estimates to direct observations in varying conditions
 - Ingest into data assimilation systems for operational forecast models
- International Programs and Collaborations
 - UN Decade of Ocean Science for Sustainable Development Program OASIS "Observing Air-Sea Interactions Strategy" (airseaobs.org)
 - Potential 2026 TPOS field campaign to target PUMP and EEWP process studies through NOAA CVP program

