What to do when we can’t have

EVERYTHING
EVERYWHERE
ALL AT ONCE

Bia Villas Boas | villasboas@mines.edu

With material from: ASTZ study group, ODYSEA and S-MODE science teams, OASIS community, and
Seo et al. (2023).
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The need for improved observation and modeling
of ASTZ processes has been repeatedly identified
by the community.
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The need for improved observation and modeling e
of ASTZ processes has been repeatedly identified
by the community.
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The need for improved observation and modeling
of ASTZ processes has been repeatedly identified
by the community.
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Q1: What are the gaps in observations and modeling
capability that need to be addressed to properly determine the
role of ASTZ processes in weather and climate variability”?

» \What regions, observables, and time and space scales should be a
focus of modeling and observations?

Q2: What are potential outcomes of concerted modeling and
observational programs focused on the ASTZ?
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Processes, scales, and regions define needs and help to
identify gaps.

Processes

M Regions

Scales
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1. Needs from processes
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1. Needs from processes

Surface processes: fluxes and sea state
* Quantify the role of the sea state and ocean meso and submesoscales in mediating air-sea fluxes
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1. Needs from processes

Surface processes: fluxes and sea state
* Quantify the role of the sea state and ocean meso and submesoscales in mediating air-sea fluxes

OBL and MABL turbulence and mixing

* Observe the vertical structure of both boundary layers to evaluate turbulence theory under a
range of sea state conditions & improve relationships between surface flux and flux profiles.
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1. Needs from processes

Surface processes: fluxes and sea state
* Quantify the role of the sea state and ocean meso and submesoscales in mediating air-sea fluxes

OBL and MABL turbulence and mixing

* Observe the vertical structure of both boundary layers to evaluate turbulence theory under a
range of sea state conditions & improve relationships between surface flux and flux profiles.

Cloud processes and precipitation

» Clouds are often rooted in the atmospheric boundary layer. Need colocated observations of
clouds, the MABL, OBL, and surface processes
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1. Needs from processes

Surface processes: fluxes and sea state
* Quantify the role of the sea state and ocean meso and submesoscales in mediating air-sea fluxes

OBL and MABL turbulence and mixing

* Observe the vertical structure of both boundary layers to evaluate turbulence theory under a
range of sea state conditions & improve relationships between surface flux and flux profiles.

Cloud processes and precipitation

» Clouds are often rooted in the atmospheric boundary layer. Need colocated observations of
clouds, the MABL, OBL, and surface processes

DUCINER

* Improve prediction skill for floods & droughts, tropical cyclones, marine heat waves, atmospheric
rivers ...
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Research Highlights that support needs
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Research Highlights that support needs
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Research Highlights that support needs

Impact of the “blob” on ARs Modulation of wave breaking by fronts
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2. Needs frOm SCaIeS PSR % I - Seoetal, 2022
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2. Needs from scales

Large scale

» Better constrain the effects of ocean forcing on
synoptic storms, storm tracks, and rainfall patterns

a) Ocean basin

Seo et al., 2022
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2. Needs from scales

Large scale

» Better constrain the effects of ocean forcing on
synoptic storms, storm tracks, and rainfall patterns

Oceanic mesoscale

* |mprove parametriztions of ocean-mesoscale-driven
air-sea heat, momentum, and tracer fluxes in
climate models that do not resolve these scales

a) Ocean basin

| Seo et al., 2022
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2. Needs from scales S N

Large scale
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Research Highlights that support needs
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Research Highlights that support needs

Assessment of near-term climate predictability
requires models that resolve oceanic mesoscale

SSTa [° C]

6OW 0 60F
Siqueira and Kirtman, 2016
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Research Highlights that support needs

Assessment of near-term climate predictability Current and thermal feedback (together) modify
requires models that resolve oceanic mesoscale wind stress gradients
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3. Needs from regions

90°E

Cronin et al., 2019. Mean Net Surface Heat Flux (Wm_z)
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3. Needs from regions

High Latitudes + MIZ

» Large disagreement between surface flux
observational products (MOST/bulk falls
apart, extreme winds and waves, ice

cover)
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Cronin et al., 2019. Mean Net Surface Heat Flux (Wm_z)
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3. Needs from regions

High Latitudes + MIZ

» Large disagreement between surface flux
observational products (MOST/bulk falls
apart, extreme winds and waves, ice

cover)

Boundary Currents

« Quantify BCs local and remote impact on
the ABL and free troposphere and
feedbacks to the ocean.

150°E 150°W SO°W

Cronin et al., 2019. Mean Net Surface Heat Flux (Wm_z)
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3. Needs from regions

High Latitudes + MIZ

» Large disagreement between surface flux
observational products (MOST/bulk falls
apart, extreme winds and waves, ice

cover)

Boundary Currents

« Quantify BCs local and remote impact on
the ABL and free troposphere and
feedbacks to the ocean.

Tropics

» Diurnal variability of the ABL, SST, OBL,
and fluxes can be stronger than
intraseasonal and annual cycles.

150°E 150°W SO°W

Cronin et al., 2019. Mean Net Surface Heat Flux (Wm_z)
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Research Highlights that support needs
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Research Highlights that support needs

Flux products largely disagree at high latitudes
Sth 25th Median 75th 95th
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Research Highlights that support needs

Flux products largely disagree at high latitudes
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Strong diurnal variability of ASTZ variables in
the tropics
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Q2: What are potential outcomes of concerted modeling and
observational programs focused on the ASTZ?
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The Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) |

« NASA Earth Venture Suborbital
mission (EVS-3)

» Hypothesis: ocean submesoscale
processes make important
contributions to vertical exchange of
climate and biological variables in
the upper ocean.

¥ Pilot Campaign (Fall 2021)
¥ |0P-1 (Fall 2022)

[ —

X |OP-2 (Spring 2023)
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The Sub-Mesoscale Ocean Dynamics Experiment (S-MODE)
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Colocated observations of ASTZ variables
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Colocated observations of ASTZ variables

Wind-current coupling observed by DopplerScatt
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Colocated observations of ASTZ variables

Wind-current coupling observed by DopplerScatt Current-SST coupling observed by MASS/DoppVis

DopplerScatt EN Wind Speed
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Using laser altimetry to understand sea state gradients
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Marechal et al., in prep
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Using laser altimetry to understand sea state gradients
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Most sea state parametrizations consider spatially smooth surface wave fields

* The spatial variability of Stokes drift results from a
combined response to wind forcing and amplitude
modulation due to currents

» Full directional spectrum is key for accurately
estimating Stokes drift and improving model
parametrizations

yrium ¢ Saturation

(a) Linear wavenumber scaleN
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Lenain and Melville, 2017 Marechal et al., in prep.

~ See also Ardhuin et al., 2017; Romero et al., 2020:
Lenain and Pizzo, 2020
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Ocean Dynamics and Surface Exchange with the
Atmosphere - The ODYSEA mission concept

* How do ocean currents evolve at small and fast scales?

Height

ODYSEA will bring into focus
daily global surface currents
and their interactions with
winds to explore the Earth
system and to improve
weather & climate predictions

Boundary layer

Hypothesis A
Learn more at. odysea.ucsd.edu
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Ocean Dynamics and Surface Exchange with the
Atmosphere - The ODYSEA mission concept
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Check out the ODYSEA simulator.
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https://github.com/awineteer/odysea-science-simulator

Butterfly (next talk): Measuring
fluxes from space

S

Butterfly .

satellite g (» .. Al
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Harmony: Wind, waves, currents,
temperature, clouds, and ice flow
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GEOS/MITgem Coupled Global Simulation (¢c1440 - llc2160)

Torres et al., 2022

0.00 0.35 0.70

Wind stress N/m?

Box 4

Surface currents m/s

* We need coupled simulations

that can serve as nature runs
for OSSEs

* The uncoupled nature run has
to be forced with consistent
atmosphere/ocean to allow for
comparisons

» Easier to do for regional scale/

short time scale (see several
studies by Renault et al., but
challenging at global scale)
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What to de when we can’t have everything everywhere all at once?

Echoing the vision of several groups
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What to de when we can’t have everything everywhere all at once?

Echoing the vision of several groups

Cloud-top Clear-sky
Entrainment «

Entrainment
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deep ocean
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We need an integrated approach!

Free troposphere

Deep ocean

To move forward, we need to treat the ASTZ as a unit for
both modeling and observation efforts

 How can we promote integrated ocean-atmosphere model
development at the modeling center level?

 How can we promote funding for integrated ocean and
atmosphere research?

 How can we promote closer collaborations among
observationalists, theoreticians, and model developers to
coordinate observations with ongoing efforts to evaluate and
Improve models, develop new parameterizations, and advance
coupled data assimilation”?

* Inter-agency “synergy maker”

ENERGY @
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We need an integrated approach!

Free troposphere

Deep ocean

To move forward, we need to treat the ASTZ as a unit for
both modeling and observation efforts

 How can we promote integrated ocean-atmosphere model
development at the modeling center level?

 How can we promote funding for integrated ocean and
atmosphere research?

 How can we promote closer collaborations among
observationalists, theoreticians, and model developers to
coordinate observations with ongoing efforts to evaluate and
Improve models, develop new parameterizations, and advance
coupled data assimilation”?

* Inter-agency “synergy maker”

villasboas@mines.edu
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What we gain: Daily global wind coverage

ASCAT v2.1 wind vectors: 2021/11/08 - morning
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QuikScat v4 wind vectors: 2009/11/14 - evening passes (~18:00 local time) - Global
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ODYSEA coverage:
e 1700 km swath
e 5km resolution

(more like QuikScat)



B spopusin ety Y)DYSEA Mission Overview

® [here are no sensors In orbit that measure total
surface currents

. “\Q There are no US operational scatterometers that
~measure winds. The existing wind sensor
constellation needs additional sensors to sample
changing winds.

Scaling DopplerScatt to space fills both of these needs
90% global coverage < 1 day (2x/day in many places)

~650 km sun-synchronous terminator (4:30 am/4:30 pm) orbit
Capability for near-real time ocean wind and currents data products (<6 hour latency)

Intend to serve Near Real-Time data products to operational agencies (Navy, NOAA,
Air Force)

® Proposal due date anticipated to be late June/early July



O et Propusion Laboratory ODYSEA Mission Overview

® SO1: Fill key knowledge gaps in the coupling mechanisms between
currents and winds by observing, quantifying, and understanding the
salient processes

® SOZ2: Fill key knowledge gaps in fundamental patterns of surface currents
globally and the dynamical ocean processes underlying these motions.



