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reeling as another
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Winter storm will bring high snow levels and heavy rain to California Thursday Night and Friday
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Cahfo rmias record W|nter Storms COUld spawn d|saStrous e Strong Winter Storm Arrives Thursday Night
floods A winter storm will reach the West Coast on 1 ,‘;;" i * m
.

Thursday Night and provide a burst of heavy
precipitation into Friday.
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e Heavy Rain and High Snow Levels Likely
Several inches of rain are expected in the
favored upslope areas of the Coastal Ranges and
Sierra Nevada in California. This will be a warm
storm system with rain falling on existing
snowpack up to 8500 feet, with the highest
snow levels expected in central California.

e Rain and Snowmelt May Lead to Flooding
The combination of heavy rain and snowmelt
may lead to flooding. The most significant
snowmelt is expected below 5000 foot
elevation, in areas with shallow snowpack
Creeks and streams in the western foothills of
the Sierra Nevada will be most vulnerable to -t

flooding from rain and snowmelt. ”
230% Chance of Snow Exceeding
e Difficult Travel in Snow at High Elevations Warning Criteria Thursday & Friday

Higher elevations in northern California and in S A PN
the Sierra Nevada are likely to see very heavy 5-Day Prec thru Early y,March:12
snow, which could lead to difficult travel | 1-2inches || 2-3inches H 3-5 inches I[ 5 or more inches |
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Large inter-model uncertainty in this atmospheric
river event in the long range (1 week lead time)!




Observed air-sea interaction
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Eddy-mediated air-sea interaction
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Oceanic forcing of the atmosphere on frontal and mesoscales



Ocean and atmospheric fronts and impact
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Current flux products have large discrepancies
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Global Mean Water Budget
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What is the global trend in ocean evaporation?

7 Globally different satellite products have varying ocean evaporation trends
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How does this differ from model estimates?
|

7 Globally different satellite products have varying ocean evaporation trends

O Models with no satellite data (RedObs) have quite similar trends to each other (but not necessarily

to satellite)
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Turbulent heat flux calculations
S

Estimate the air-sea turbulent heat fluxes:

Turbulent heat flux =

Sensible heat flux + Latent heat flux

Qsm =g Cp CH U(\Tsea — Yzmj) Qlat - :O(I,Lv CE U(%ea —q az'fr,)

s ) - Ar \ i
Turbulent ¥y he: Hanaly Turbulent % Wind ﬁ[{;ﬁgﬁy

density
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heat capacity coefficient
Data Sources: Butterfly Model Coefficients

The turbulent heat fluxes include sensible and latent heat fluxes. The latent
heat flux is directly related to moisture flux through evaporation.



Satellite analysis across Gulf Stream
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BUTTERFLY

revealing the
oceans’ impact on
weather & climate
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Butterfly’s single instrument combines:

Passive microwave channels: 7, 11, 19, 24, 37 GHz
Measures sea surface temperature & wind speed

Near-surface sounding channels: 109-117, 150-175 GHz
Measures near-surface air temperature & humidity

Two spinning reflectors: Achieves 20 km spatial resolution

Digital backend: Improves accuracy and provides RFI-

robust data

Key Spacecraft Characteristics owrequency antenne
Butterfly leverages Ball’s high-heritage
spacecraft product line (GPIM, STPSat-3)
and experience accommodating rotating

reflectors (QuikSCAT & WSF-M).

+ Single-string architecture with
functional redundancy in safe
mode using backup ADCS
components

+ Solar electric propulsion for orbit
transfer and maintenance

+ Zero net momentum ADCS

Alternative Access to Space

+ SpaceX Falcon 9 dedicated
rideshare to 500-600 km altitude

+ JPL procurement compliant with
NASA insight and approval policies

High-frequency
antenna

(air temp,
humidity)

Operational Orbit
* > 800 inclination
e 425 +25 km altitude



Butterfly Science: Local to Regional
T

Addressing Decadal Survey Question W-3 “How do
spatial variations in surface characteristics modify transfer
between domains and thereby influence weather and air

quality?”

Science Objective 1: Determine the degree to which sub
25-km resolution turbulent heat and moisture fluxes
iInfluence midlatitude storm evolution and long-term weather.



Butterfly Science: Local to Global
S

Addressing Decadal Survey Question C-4 “How will
the Earth system respond to changes in air-sea
interactions?”

Science Objective 2: Balance the global ocean
turbulent heat and moisture flux contributions to the
energy and water cycles to within 5%.



Why now?
T

Prediction systems are moving towards high-resolution coupled ocean-
atmosphere models.

We don’t have high-resolution air-sea heat and moisture flux
measurements needed to evaluate and improve these models.

Butterfly fills a major gap in our knowledge of how small-scale air-sea

exchange of heat and moisture affect large-scale weather and climate,
potentially improving forecast accuracy from days to a season by
providing global measurements of the air-sea turbulent heat and moisture

fluxes.



Synergies with other community efforts
-4

© CIMR (Copernicus Imaging Microwave

Radiometer, conically scanning)
o SST at 15 km (55 km salinity, 5 km sea
ice concentration). Currently Phase

B2, with view to launch in 2027. 10
years (2 systems)

O Butterfly could fly in similar orbit Gain
larger swath, could drop our other
retrieval resolution to 10 km




Synergies with other community efforts
T

ESA Harmony, selected 10th Earth Explorer mission
O Multibeam thermal-infrared instrument, receive-only SAR, 2 satellites

OWill provide cloud movements, SST, winds, waves, and
currents

NASA ODYSEA mission concept
NASA PBL, currently in incubation

OScience team meetings etc. to be more broadly open to
develop larger boundary layer community



Current and planned Butterfly activities

Satellite Simulator: Synthetic data for “early adopters”
Hackathon & making code available on github
Webinars

We seek qualified individuals to serve on its science team.

Expertise in Socioeconomic research, Tools development for
Butterfly applications, Use of scientific data for societal weather/
climate solutions

Take a picture to go to the
Butterfly project page




Butterfly would be the first satellite mission to simultaneously
measure sea surface temperature, wind, & near-surface air
temperature & humidity in order to estimate air—sea turbulent
heat and moisture fluxes at a spatial resolution and accuracy

sufficient to resolve the impact of small-scale ocean features on
large-scale weather and climate.



