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.. Fundamental problem in subseasonal-to-seasonal forecasting

• Forecast models have, on average, low skill for leads beyond 3 weeks 

ECMWF IFS – 2m temperature skill (DJF 1999-2010)

Forecast Week 2 Forecast Week 4

anomaly correlation > 0.5-0.7 anomaly correlation < 0.2-0.3



.. What information/tools do forecasters use?

• Ensembles of models

• Methods for identifying ‘forecasts of opportunity’

• Knowledge of dynamical processes contributing to signals

⟹ Consistency across tools builds forecast confidence



.. How can machine learning meet these needs?

• Ensembles of models
⟹ ML model must have comparable skill

• Methods for identifying ‘forecasts of opportunity’
⟹ ML model must identify forecasts of opportunity at time of forecast

• What dynamical processes are contributing to forecasts?
⟹ Ideally relate forecasts of opportunity to known climate modes

ML examples that meet these criteria to various degrees:
§ Linear inverse models (detailed here, Albers and Newman 2020, 2021)
§ Explainable neural networks (Mayer/Barnes 2021, van Straaten et al. 2022)
§ ML from GCM output (Ding et al. 2018, Ham et al. 2019, Shin et al. 2020, Gibson et al. 2021)
§ Signal-to-noise ensemble forecast models (Charlton-Perez et al. 2021)



LIM forecast signal

LIM noise forcing
(forecast uncertainty)

Identifying high skill periods a priori

‘Expected skill of perfect model infinite-member ensemble-mean

forecast’:
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• S2 �! forecast signal-to-noise ratio (based on the LIM in our case)

• t �! forecast initial time

• ⌧ �! forecast lead
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‘Expected skill’ of a perfect model infinite-member ensemble mean forecast

(Sardeshmukh et al. 2000, Albers and Newman 2019, 2021)

• Calculated at time of forecast (it is a forecast of forecast skill)
• Forecast lead dependent

Empirical model constructed from observed lag-covariances statistics
⟹ Here, predicted variables in LIM state vector (𝒙) include: tropospheric and stratospheric mass and circulation, tropical SSTs 

and heating, 2m temperature (all taken from JRA-55 reanalysis)

What is a LIM and how does it identify forecasts of opportunity?



.. High skill forecasts identified using LIM’s signal-to-noise ratio

High skill top 15% of forecasts
Low skill remaining 85%

(Albers and Newman 2021)

• LIM identifies skillful forecasts for itself 
AND in other numerical forecast models



February 2021 extreme cold air outbreak

Verification

ECMWF IFS Week 3/4 forecast

• Forecast initialized – Jan. 21

• Verification period – Feb. 5-18

2m temperature forecasts

NOAA CPC/PSL LIM probabilistic Week 4 
forecast

• Forecast initialized – Jan. 19

• Verification period – Feb. 10-16

• Central United States 30° F below 
normal Feb. 7-21

• Shreveport, LA breaks record low 
by 19° F  ( low of 1° F )

• Widespread power and water 
outages

• More than 100 deaths and $200-
300 billion in damages

(sources: NOAA NWS and NCEI, AP, CBS)
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1. What dynamical climate modes caused the CAO?

2. What dynamical modes were predictable at subseasonal forecast leads?

Questions:



.. Building a ‘dynamical filter’ for dynamical process attribution

Eigendecomposition of      yields eigenmodes with 3 important characteristics:

1. Period/frequency of oscillation

2. e-folding decay time

3. Relative amplitude in each LIM state vector (    ) variable

(e.g., Penland and Matrasova 2006, Albers and Newman 2021)

LIM-based ‘nonnormal’ filter:
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Example: LIM MJO eigenmode

Example: MJO eigenmode

• period (frequency) of oscillation = 52 days (0.02 days
�1

)

• e-folding decay time = 21 days

• ERA-Interim 250 hPa
geopotential heights (contours) 

• GPCP precipitation (filled 
contours)

(Hendersen et al. J.Clim. 2017)

MJO phase 3 MJO phase 7

LIM-based MJO eigenmode:

• 500 hPa geopotential heights 
(contours)

• tropical heating (filled 
contours)

• e-folding time = 21 days
• oscillation period = 52 days

(Henderson et al. J. Clim. 2017)
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.. Dynamical processes from LIM filter:

Tropical SST subspace
• Teleconnections through upper troposphere-lower 

stratosphere
• Captures ENSO diversity
• Captures ‘ENSO-stratosphere’ teleconnection 

pathway

Total anomaly

Stratospheric NAM
• Captures downward SSW 

influence
• No SST component

Internal variability
• Large subspace of modes
• Largely unpredictable on S2S 

timescales

MJO

(References: SST-stratosphere-SSW modes → Albers and Newman 2021  – MJO-ENSO → Henderson et al. 2020)



Internal variability MJO Stratospheric NAM
(SSW)

Tropical SSTs
(La Niña)

LIM 
forecasts

Verifications

Total anomaly = +++

2m temperature Forecast initialized – Jan. 24 Forecast verified – Feb. 8 - 21



Conclusions:
• Machine learning models can contribute to S2S forecasting by:

§ Forecasts skillful enough to contribute to forecast ensemble

§ Help identify ‘forecasts of opportunity’

§ Identify dynamical processes contributing to forecasts

• ML capabilities are actively being developed, promising approaches 
include:

§ Linear inverse models

§ ‘Explainable’ neural networks

§ ML from GCM output (e.g., convolutional neural network and model analog 
approaches)


