Machine learning for climate prediction and attribution: Use and best practices

John R. Albers1,2

1Cooperative Institute for Research in the Environmental Sciences
University of Colorado Boulder

2NOAA - Physical Sciences Laboratory

Acknowledgements: Matthew Newman, Sam Lillo, Melissa Breeden, Andrew Hoell, Yan Wang

March 16, 2022
Fundamental problem in subseasonal-to-seasonal forecasting

- Forecast models have, on average, low skill for leads beyond 3 weeks

ECMWF IFS – 2m temperature skill (DJF 1999-2010)

Forecast Week 2
anomaly correlation > 0.5-0.7

Forecast Week 4
anomaly correlation < 0.2-0.3
What information/tools do forecasters use?

- Ensembles of models
- Methods for identifying ‘forecasts of opportunity’
- Knowledge of dynamical processes contributing to signals

 ⟹ Consistency across tools builds forecast confidence
How can machine learning meet these needs?

- Ensembles of models
 → ML model must have comparable skill

- Methods for identifying ‘forecasts of opportunity’
 → ML model must identify forecasts of opportunity at time of forecast

- What dynamical processes are contributing to forecasts?
 → Ideally relate forecasts of opportunity to known climate modes

ML examples that meet these criteria to various degrees:

- Linear inverse models (detailed here, Albers and Newman 2020, 2021)
- Explainable neural networks (Mayer/Barnes 2021, van Straaten et al. 2022)
- ML from GCM output (Ding et al. 2018, Ham et al. 2019, Shin et al. 2020, Gibson et al. 2021)
- Signal-to-noise ensemble forecast models (Charlton-Perez et al. 2021)
What is a LIM and how does it identify forecasts of opportunity?

Empirical model constructed from observed lag-covariances statistics

⇒ Here, predicted variables in LIM state vector (x) include: tropospheric and stratospheric mass and circulation, tropical SSTs and heating, 2m temperature (all taken from JRA-55 reanalysis)

\[
\frac{dx}{dt} = (Lx) + (\xi)
\]

• LIM forecast signal

• LIM noise forcing (forecast uncertainty)

′Expected skill′ of a perfect model infinite-member ensemble mean forecast

\[
\rho_\infty(t; \tau) = \frac{S^2(t; \tau)}{\left([S^2(t; \tau) + 1]S^2(t; \tau)\right)^{1/2}}
\]

• \(S^2\) → forecast signal-to-noise ratio (based on the LIM in our case)
• \(t\) → forecast initial time
• \(\tau\) → forecast lead

• Calculated at time of forecast (it is a **forecast of forecast skill**)
• Forecast lead dependent

(Sardeshmukh et al. 2000, Albers and Newman 2019, 2021)
High skill forecasts identified using LIM’s signal-to-noise ratio

- LIM identifies skillful forecasts for itself **AND** in other numerical forecast models

Graph:

- **NAO hindcast skill (1997-2016)**
 - **Correlation**
 - **Week**
 - **LIM high expected skill**
 - **LIM low expected skill**
 - **IFS high expected skill**
 - **IFS low expected skill**

High skill → top 15% of forecasts
Low skill → remaining 85%

(Albers and Newman 2021)
February 2021 extreme cold air outbreak

Verification

• Central United States 30° F below normal Feb. 7-21
• Shreveport, LA breaks record low by 19° F (low of 1° F)
• Widespread power and water outages
• More than 100 deaths and $200-300 billion in damages

(sources: NOAA NWS and NCEI, AP, CBS)

2m temperature forecasts

ECMWF IFS Week 3/4 forecast
• Forecast initialized – Jan. 21
• Verification period – Feb. 5-18

NOAA CPC/PSL LIM probabilistic Week 4 forecast
• Forecast initialized – Jan. 19
• Verification period – Feb. 10-16
February 2021 extreme cold air outbreak

Verification

2m temperature forecasts

Questions:

1. What dynamical climate modes caused the CAO?

2. What dynamical modes were *predictable* at subseasonal forecast leads?

- Shreveport, LA breaks record low by 19°F (low of 1°F)
- Widespread power and water outages
- More than 100 deaths and $200-300 billion in damages

(sources: NOAA NWS and NCEI, AP, CBS)
Building a ‘dynamical filter’ for dynamical process attribution

LIM-based ‘nonnormal’ filter:

\[
\frac{dx}{dt} = Lx + \xi
\]

Eigendecomposition of \(L \) yields eigenmodes with 3 important characteristics:

1. Period/frequency of oscillation
2. e-folding decay time
3. Relative amplitude in each LIM state vector (\(x \)) variable

(e.g., Penland and Matrasova 2006, Albers and Newman 2021)
What dynamical processes caused the CAO?

Eigendecomposition of $\frac{dx}{dt} = \mathbf{L} \mathbf{x}$ yields eigenmodes with 3 important characteristics:

1. Period/frequency of oscillation
2. E-folding decay time
3. Relative amplitude in each LIM state vector (\mathbf{L})

Example: LIM MJO eigenmode

- Period (frequency) of oscillation = 52 days (0.02 days$^{-1}$)
- E-folding decay time = 21 days
- ERA-Interim 250 hPa geopotential heights (contours)
- GPCP precipitation (filled contours)

(Hendersen et al. J.Clim. 2017)

MJO phase 3

LIM-based MJO eigenmode:

- 500 hPa geopotential heights (contours)
- Tropical heating (filled contours)
- E-folding time = 21 days
- Oscillation period = 52 days

Dynamical processes from LIM filter:

- Tropical SST subspace
 - Teleconnections through upper troposphere-lower stratosphere
 - Captures ENSO diversity
 - Captures ‘ENSO-stratosphere’ teleconnection pathway

- Stratospheric NAM
 - Captures downward SSW influence
 - No SST component

- Internal variability
 - Large subspace of modes
 - Largely unpredictable on S2S timescales

- MJO

(References: SST-stratosphere-SSW modes → Albers and Newman 2021 – MJO-ENSO → Henderson et al. 2020)
2m temperature Forecast initialized – Jan. 24 Forecast verified – Feb. 8 - 21

Total anomaly = Internal variability + Tropical SSTs (La Niña) + MJO + Stratospheric NAM (SSW)

Verifications

LIM forecasts
Conclusions:

• Machine learning models can contribute to S2S forecasting by:
 - Forecasts skillful enough to contribute to forecast ensemble
 - Help identify ‘forecasts of opportunity’
 - Identify dynamical processes contributing to forecasts

• ML capabilities are actively being developed, promising approaches include:
 - Linear inverse models
 - ‘Explainable’ neural networks
 - ML from GCM output (e.g., convolutional neural network and model analog approaches)