Sources of Regional Predictability Across Timescales: Northern US East Coast

Michael Alexander
NOAA/Physical Sciences Laboratory
Simple model for generating SST variability

“stochastic model”

Heat fluxes associated with weather events, “random forcing”

Ocean response to flux back heat which slowly damps SST anomalies

SST anomalies form

Air-sea interface

Fixed depth ocean

No currents

Bottom

The density & specific heat of sea water is large compared to the atmosphere
Leads to the persistence of temperature anomalies
Stochastic SST Anomaly model: idealized forcing and time series

Winter MLD (m)

SSTs can be very persistent if MLD (h) is deep although not exceptional deep along NEUS coast

Buckley et al. 2019 J Climate
The Reemergence Mechanism

- Winter Surface flux anomalies
- Create SST anomalies which spread over ML
- ML reforms close to surface in spring
- Summer SST anomalies strongly damped by air-sea interaction
- Temperature anomalies persist in summer thermocline
- Re-entrained into the ML in the following fall and winter

Namias and Born 1970, 1974; Alexander and Deser (1995, JPO); Alexander et al. 1999

Q_{net}'
Reemergence in the North Atlantic

Reg 1 - Subtropical Atlantic (48%)

Remote reemergence?

Q_{net}'

MLD

Timlin, Alexander, Deser, 2002, J. Climate
Patterns of Surface Fluxes and SSTs associated with the North Atlantic Oscillation (NAO)

Contours are sea level pressure (SLP); vectors - winds
Shading left is SST anomalies, on right is the Flux anomalies
Reemergence of SST Tripole pattern

Leading EOF of March SST

Auto-correlation of EOF PC time series

ERSSTv2 Datasets [1950-2003]

Degrees Celsius

Predictability of the NAO/N. Atlantic SST Variability

- (Made up) example of predictability of NAO and regional SSTs in general
- True predictability is still open to question and likely depends on time scale and averaging period
- NAO can be generated by internal atmospheric dynamics (predictable to ~2 weeks)
- Recent results are encouraging for longer time scale predictability
Prediction of the NAO

24-member ensemble of forecasts for each winter 1993 to 2012 centered on 1 November

Large ensemble needed due to low signal-to-noise ratio. Termed “Signal to noise paradox”: model (ensemble mean) predicts observations better than it predicts any one simulation (“perfect prog”)

Also skillful multiyear prediction of the NAO using NCAR DPLE system: Athanasiadis, et al. 2021

Climate and Atmospheric Science
Ocean Circulation of the North Atlantic
North Atlantic Rossby Waves (SSH)

- Generated by:
 - wind stress curl,
 - buoyance forcing
 - flow over topography

- Move westward
 - 1-3 year across Atlantic

- Adjustment process
 - Influence Gulf Stream
 - May influence species habitat in frontal & eddy regions
 - May be blocked from reaching the coast

Osynchy and Cornillon, 2004, JPO

Fig. 1. Time-longitude diagrams of the SSH anomalies. Color scale is the same for all plots in the figure.
Shifts in the Position of the Gulf Stream

Neto et al. 2021
Communications Earth & Environment
Gulf Stream (Meridional) Position and Silver Hake

Davis et al. 2017 Continental Shelf Res.
Atlantic Multi-Decadal Oscillation (AMO) or Variability (AMV)

- Important to remove climate change signal
- Temperature fluctuations may be due to:
 - AMOC
 - Thermal forcing
 - Changes in aerosols

Regression on AMO Index

SST averaged over N. Atlantic

SPEAR: GFDL prediction system

Yang et al. 2021, James
SST Response to climate change
2070-2099 – 1976-2005

ROMS
7 km resolution
Driven by 3 GCMS

Alexander et al. 2020 J. Climate
Factors influencing Prediction for the NE US shelf

- Several thermodynamic and dynamic processes may lead to prediction of the physics, chemistry and biology along the coast and offshore, But …
 - Nature of the system with strong weather events initiated over N. America can limit predictability at time scales longer than ~2 weeks
 - Region: Complex Bathymetry, Eddies, mixing of two currents, limited ENSO effects, etc.
 - Large-scale open-ocean processes may have limited influence on the shelf
 - Rossby waves are blocked to some degree by the wide shelf
 - Skill of the forecasts mainly determined by Anomaly Correlation, which may obscure some forecast issues
 - e.g., magnitude of the forecasts; actionable?
 - Much of the skill comes from the trend (anthropogenic climate change)
 - Skill greatly decreases when compared with un-initialized climate runs (especially on decadal time scales)
 - Trend may also enhance AC due initializing forecasts with a preset warm or cold state
- NMME models have struggled to make accurate seasonal forecasts for the NEUS shelf region
Seasonal Predictability of North American Coastal SST and SSH Anomalies

Shin and Newman, 2021, GRL
Additional slides
Stochastic Model: correspondence to the real world?

Observed and Theoretical Spectra for SST anomalies (SSTA) at a location in the North Atlantic Ocean.

Atmospheric forcing and ocean feedback can be estimated from data.
AMO and Global Warming

Northern Hemisphere Temperatures

Simple forced climate model no “natural” climate variability

\[\Delta T (2x) = 2.4 ^\circ C \]
\[\Delta F(SO_4) = -1.10 \text{ W m}^{-2} \]
Impact of reemergence on SST Persistence: Augmenting the Stochastic SST model

\[r(\tau) = \exp\left[-\lambda \tau / \rho ch \right] \]

Deser et al. 2003
North Atlantic

Monthly SST Lag Correlation: 50N–65N, 60W–10W

Heff = winter MLD for interannual variability in a stochastic model

Deser et al. 2003
Use the Kaplan SST dataset (5x5).
Compute the area weighted average over the N Atlantic, basically 0 to 70N.
Detrend that time series
Optionally smooth it with a 121 month (10 Yr) smoother.
Temperature Trends (°C decade⁻¹) 1993-2018
Main Concepts

• Mixed Layers
 – Processes that control its depth
 – Wind stirring buoyancy forcing, density jump at base of ML
 – Processes that control its temperature (SST)
 • Surface heat flux
 • Entrainment heat flux

• Mechanisms for the behavior of SST anomalies
 • Stochastic model
 • Reemergence
 • Large scale patterns of atmospheric forcing organizes fluxes, shapes SST Anomaly and reemergence patterns

• Questions?
1. What is the oceanic reemergence?

2. Surface signature of reemergence in the Labrador Sea

- Reemergence of the late winter SST anomalies a year after

Auto-correlation of the Labrador SST time series (Starting from March), e.g. for lag=1, March and April time series are correlated, for lag=2 March and May etc.

Deser et al. 2003 (J.Clim)
Atmosphere forcing the ocean in winter:
NAO & the Atlantic SST tripole

March SST EOF1 (shade)
Regressed JFM SLP (contour)

PC time series: March SST (bars),
JFM MSLP (line)

NCEP MSLP [1950-2003]

Correlation=0.63

e.g. Deser and Timlin (1997), J.Clim.
The decorrelation time scale T_2 (colors) for based on (a) Ishii, (b) EN4, and (c) the Cheng OHC product. The black dots show the points where the decorrelation time scale does not exceed the time scale predicted from white noise on interannual time scales at the 90% confidence level; see the appendix for details. The black contours show the wintertime climatological MLD D at levels of 500 and 1000 m. For Ishii and EN4, D is based on a density criterion applied to the gridded observations. For Cheng, D is based on an Argo MLD climatology (Holte et al. 2017). Starred points P3 in (a) and P4 in (b) correspond to points P3 and P4 shown in Figs. 9a and 9b.
What can we learn about the Atlantic Meridional Overturning Circulation using ocean reanalysis products?

Tong Lee

NASA Jet Propulsion Laboratory

Picture from http://www.noc.soton.ac.uk