What are the dominant atmospheric drivers of interannual AMOC variability?

Dan Amrhein, Dafydd Stephenson National Center for Atmospheric Research

LuAnne Thompson, Noah Rosenberg University of Washington

Also thanks to Ichiro Fukumori, Yavor Kostov

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

What are the dominant atmospheric drivers of interannual AMOC variability?

Dan Amrhein, Dafydd Stephenson

National Center for Atmospheric Research

LuAnne Thompson, Noah Rosenberg University of Washington

"Variance budgets" describe contributions to ocean variability

$X_{\text{amoc}} = X_{\tau} + X_b + \dots$

$\operatorname{var}\left(X_{\operatorname{amoc}}\right) = \operatorname{var}\left(X_{\tau}\right) + \operatorname{var}\left(X_{b}\right) + 2\operatorname{cov}\left(X_{b}, X_{\tau}\right) + \dots$

"Variance budgets" describe contributions to ocean variability

Stephenson and Sevellec 2021a: The Active and Passive Roles of the Ocean in Generating Basin-Scale Heat Content Variability, GRL 2021b: Dynamical Attribution of N. Atlantic Interdecadal Predictability to Oceanic and Atmospheric Turbulence under Diagnosed and Optimal Stochastic Forcing, J Clim Close et al. 2020, Jamet et al. 2020...

Ocean model adjoint sensitivities diagnose dominant drivers

"Quantity of interest"

Any function of the model state (e.g., AMOC strength)

$\mathbf{S} = \frac{\partial x}{\partial \mathbf{q}}$

"Controls"

Vector in time and space of ocean model inputs that can change *x* (e.g., surface heat fluxes)

Adjoint sensitivity

How much will changing **q** change *x*? (A *locally linear* estimate)

Ocean model adjoint sensitivities diagnose dominant drivers

Pillar et al. 2016 Also Heimbach and Wunsch 2011; Jones et al. 2018; Kostov et al. 2019, 2021; Fukumori et al. 2021

x10-10 Sv/W

Ocean model adjoint sensitivities diagnose dominant drivers

Sensitivities reveal **"optimal"** drivers of *x* that reflect **ocean** length and time scales.

In the spirit of variance budgets, can we derive sensitivities to derive atmospheric patterns that contribute most to *ocean* variance?

Pillar et al. 2016 Also Heimbach and Wunsch 2011; Jones et al. 2018; Kostov et al. 2019, 2021; Fukumori et al. 2021

 $x = \mathbf{s}^{\mathsf{T}} \mathbf{q}$ $\operatorname{var}(x) = \mathbf{s}^{\mathsf{T}} \mathbf{C} \mathbf{s}$ $= \operatorname{tr}(\mathbf{S}^{\mathsf{T}} \mathbf{C}_{s} \mathbf{S})$

Sensitivities allow us to write x (AMOC) as a linear function of fluxes q...

... and the variance of x in terms of the (*space-time*!) covariance of q.

Assuming q is white noise simplifies to a function of purely *spatial* covariances

$$x = \mathbf{s}^{\mathsf{T}} \mathbf{q}$$
$$\operatorname{var}(x) = \mathbf{s}^{\mathsf{T}} \mathbf{C} \mathbf{s}$$
$$= \operatorname{tr}(\mathbf{S}^{\mathsf{T}} \mathbf{C}_{s} \mathbf{S})$$

Sensitivities allow us to write x (AMOC) as a linear function of fluxes q...

... and the variance of x in terms of the (*space-time*!) covariance of q.

Assuming q is white noise simplifies to a function of purely *spatial* covariances

$$x = \mathbf{s}^{\mathsf{T}} \mathbf{q}$$

var (x) = $\mathbf{s}^{\mathsf{T}} \mathbf{C} \mathbf{s}$
= tr ($\mathbf{S}^{\mathsf{T}} \mathbf{C}_{s} \mathbf{S}$)
= tr ($\mathbf{C}^{1/2} \mathbf{S}_{s}^{\mathsf{T}} \mathbf{S} \mathbf{C}^{\mathsf{T}/2}$)

Sensitivities allow us to write x (AMOC) as a linear function of fluxes q...

... and the variance of x in terms of the (space-time!) covariance of q.

Assuming q is white noise simplifies to a function of purely *spatial* covariances

 $\mathbf{P} \mathbf{\Lambda} \mathbf{P}^{\mathsf{T}} =$

$$= \mathbf{C}^{1/2} \mathbf{S}_s^{\mathsf{T}} \mathbf{S}_s \mathbf{C}^{\mathsf{T}/2}$$

Eigenvectors (\mathbf{p}_j) are atmospheric patterns whose variability maximizes var (x^2) .

 $\mathbf{P} \mathbf{\Lambda} \mathbf{P}^{\top} =$

If $\mathbf{C} = \mathbf{I}$ (**q** is white noise in space), \mathbf{p}_j are **optimal patterns** for stochastic excitation (e.g., Farrell and Iaonnou 1996)

$$= \mathbf{C}^{1/2} \mathbf{S}_s^{\mathsf{T}} \mathbf{S}_s \mathbf{C}^{\mathsf{T}/2}$$

Eigenvectors (\mathbf{p}_j) are atmospheric patterns whose variability maximizes var (x^2) .

> If $\mathbf{S}_{s}^{\mathsf{T}}\mathbf{S}_{s} = \mathbf{I}$ (e.g. adjoint sensitivities are orthonormal in time), \mathbf{p}_i are atmospheric EOFs

Voila, an eigenvector problem! $\mathbf{P} \mathbf{\Lambda} \mathbf{P}^{\top} =$ Eigenvectors (\mathbf{p}_j) are atmospheric patterns whose variability maximizes var (x^2) .

If $\mathbf{C} = \mathbf{I}$ (**q** is white noise in space), \mathbf{p}_i are **optimal patterns** for stochastic excitation (e.g., Farrell and Iaonnou 1996)

$$= \mathbf{C}^{1/2} \mathbf{S}_s^{\mathsf{T}} \mathbf{S}_s \mathbf{C}^{\mathsf{T}/2}$$

"COFs" = combined orthogonal functions

If $\mathbf{S}_s^{\top} \mathbf{S}_s = \mathbf{I}$ (e.g. adjoint sensitivities are orthonormal in time), \mathbf{p}_i are atmospheric EOFs

~1° resolution MITgcm ECCO v4 configuration

Ocean and sea ice components spun up under 4800 years following *Wolfe et al. 2017*).

Adjointed and run to compute sensitivities of AMOC transport at climatological maximum depth at annual and decadal averages across several latitudes.

Fluxes are 6-hourly from ECCO v4r4.

ECCO: Forget et al. 2015; CNYF: Large and Yeager 2009

Leading stochastic optimal for AMOC variance at 55N by heat fluxes

Leading stochastic optimal for AMOC variance at 55N by heat fluxes

Leading EOF of ECCO v4r4 heat fluxes

- 0.04

- 0.02

- 0.00

-0.02

-0.04

Leading stochastic optimal for AMOC variance at 55N by heat fluxes

Leading EOF of ECCO v4r4 heat fluxes

Leading heat flux COF contributing to decadal-mean AMOC variability

- 0.04

- 0.02

- 0.00

-0.02

-0.04

Leading stochastic optimal for AMOC variance at 55N by heat fluxes

Leading EOF of ECCO v4r4 heat fluxes

A region of "latent" AMOC variance production?

Leading heat flux COF contributing to decadal-mean AMOC variability

- 0.04

- 0.02

- 0.00

-0.02

-0.04

Leading stochastic optimal for AMOC variance at 55N by heat fluxes

Leading EOF of ECCO v4r4 heat fluxes

Leading heat flux COF contributing to decadal-mean AMOC variability

Very similar leading patterns (r~.99) were found across latitudes and when targeting annual and decadal AMOC variability.

Looking familiar?

SLP EOF1

Leading heat flux COF contributing to decadal-mean AMOC variability

Regression of SLP PC1 onto HF

Leading heat flux COF contributing to decadal-mean AMOC variability

In "perturbed ECCO" simulations, removing the leading COF from ECCO forcing drives more AMOC variance than the leading EOF across time scales

"Perturbed ECCO" simulations run in a **"flux-only" configuration** to isolate contributions from different fluxes (*Fukumori et al. 2021*).

In "perturbed ECCO" simulations removing heat flux patterns, the leading COF drives more AMOC variance than the leading EOF across time scales

"Perturbed ECCO" simulations run in a "flux-only" configuration to isolate contributions from different fluxes (Fukumori et al. 2021).

Longer time scales of AMOC variability are reduced most and have greatest meridional extent

L_100

Longer time scales of AMOC variability are reduced most and have greatest meridional extent

Jackson et al. 2022

-100

Might non-NAO, decadal-scale wind be important for *meridional* asynchrony?

55N

Jackson et al. 2022 see e.g. Häkkinen et al. 2011; Barrier et al. 2014; Kim et al. 2016...

Wind stress: leading stochastic optimals

Zonal component

Meridional component

Leading COFs

Zonal component

Meridional component

Conclusions and future work

Adjoints tell us what the **ocean wants from the atmosphere**. Atmospheric EOFs describe **dominant atmospheric patterns**. By combining adjoints and atmospheric statistics, we identify causal atmospheric structures that dominate ocean variability.

When applied to AMOC on annual- and decadal-average time scales, a common NAO-like heat flux pattern dominates variance change across time scales and latitudes by reducing density anomaly amplitudes in the SPG.

A related procedure permits smoothing adjoint sensitivities to reflect prior atmospheric covariances and additional observations of the atmosphere. These procedures are useful in state estimation (especially paleo!).

Caveats: Linear sensitivities. Covariances assume stationary fluxes. Using a 1° ocean-only model.

From Dafydd: Please reach out if you're interested in setting up or running an ocean adjoint model! <u>dafydd@ucar.edu</u>

