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Xamoc = Xτ + Xb + …

var (Xamoc) = var (Xτ) + var (Xb) + 2cov (Xb, Xτ) + …

Moat et al. 2020

“Variance budgets” describe contributions to ocean variability



Stephenson and Sevellec 2021a: The Active and Passive Roles of the Ocean in Generating Basin-Scale Heat Content Variability, GRL 
2021b: Dynamical Attribution of N. Atlantic Interdecadal Predictability to Oceanic and Atmospheric Turbulence under Diagnosed and Optimal Stochastic Forcing, J Clim 
Close et al. 2020, Jamet et al. 2020…
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“Variance budgets” describe contributions to ocean variability

https://www.degreesymbol.net/
https://www.degreesymbol.net/


Ocean model adjoint sensitivities diagnose dominant drivers

s =
∂x
∂q

“Quantity of interest”

Any function of the model state 

(e.g., AMOC strength) 

“Controls”  
Vector in time and space of ocean 
model inputs that can change  

(e.g., surface heat fluxes)


Adjoint sensitivity

How much will changing  change ? 

(A locally linear estimate)

x
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@ 26N in January

s =
∂x
∂q

Ocean model adjoint sensitivities diagnose dominant drivers

Pillar et al. 2016 
Also Heimbach and Wunsch 2011; Jones et al. 2018; 
Kostov et al. 2019, 2021; Fukumori et al. 2021

Surface heat fluxes
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Ocean model adjoint sensitivities diagnose dominant drivers

Pillar et al. 2016 
Also Heimbach and Wunsch 2011; Jones et al. 2018; 
Kostov et al. 2019, 2021; Fukumori et al. 2021

Surface heat fluxes


Sensitivities reveal “optimal” drivers of  that

reflect ocean length and time scales.

In the spirit of variance budgets, can we derive 
sensitivities to derive atmospheric patterns that 
contribute most to ocean variance?

x



Can we find the dominant atmospheric contributions to ocean variance?

x = s⊤q Sensitivities allow us to write x (AMOC) 
as a linear function of fluxes q…

var (x) = s⊤Cs … and the variance of x in terms of 
the (space-time!) covariance of q.

Assuming q is white noise simplifies to 
a function of purely spatial covariances= tr (S⊤CsS)
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Can we find the dominant atmospheric contributions to ocean variance?

x = s⊤q Sensitivities allow us to write x (AMOC) 
as a linear function of fluxes q…

var (x) = s⊤Cs … and the variance of x in terms of 
the (space-time!) covariance of q.

Assuming q is white noise simplifies to 
a function of purely spatial covariances= tr (S⊤CsS)

= tr (C1/2S⊤
s SC⊤/2)



Can we find the dominant atmospheric contributions to ocean variance?

PΛP⊤ = C1/2S⊤
s SsC⊤/2

Eigenvectors ( ) are 
atmospheric patterns 

whose variability 
maximizes .

pj

var (x2)
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If  (e.g. adjoint 
sensitivities are 

orthonormal in time),  
are atmospheric EOFs

S⊤
s Ss = I

pj

If  (  is white noise in 
space),  are optimal patterns 
for stochastic excitation (e.g., 

Farrell and Iaonnou 1996)

C = I q
pj



Can we find the dominant atmospheric contributions to ocean variance?

Voila, an eigenvector problem!

PΛP⊤ = C1/2S⊤
s SsC⊤/2

Eigenvectors ( ) are 
atmospheric patterns 

whose variability 
maximizes .

pj

var (x2)

If  (e.g. adjoint 
sensitivities are 

orthonormal in time),  
are atmospheric EOFs

S⊤
s Ss = I

pj

If  (  is white noise in 
space),  are optimal patterns 
for stochastic excitation (e.g., 

Farrell and Iaonnou 1996)

C = I q
pj

“COFs” = combined 

orthogonal functions





ECCO: Forget et al. 2015; CNYF: Large and Yeager 2009 

~1° resolution MITgcm ECCO v4 configuration 
Ocean and sea ice components spun up under 
4800 years following Wolfe et al. 2017). 

Adjointed and run to compute sensitivities of 
AMOC transport at climatological maximum depth 
at annual and decadal averages across several 
latitudes. 

Fluxes are 6-hourly from ECCO v4r4. 

https://www.degreesymbol.net/


Leading patterns are intermediate between stochastic optimals and atmospheric EOFs

Leading stochastic optimal for 
AMOC variance at 55N by heat 

fluxes
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Leading patterns are intermediate between stochastic optimals and atmospheric EOFs

A region of “latent” AMOC variance production?
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contributing to decadal-mean 
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Leading patterns are intermediate between stochastic optimals and atmospheric EOFs

Leading stochastic optimal for 
AMOC variance at 55N by heat 

fluxes

Leading heat flux COF 
contributing to decadal-mean 

AMOC variability

Leading EOF of 
ECCO v4r4 heat fluxes

Very similar leading patterns (r~.99) were 
found across latitudes and when targeting 
annual and decadal AMOC variability.



Looking familiar?

Leading heat flux COF 
contributing to decadal-mean 

AMOC variability
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In “perturbed ECCO” simulations, removing the leading COF from ECCO forcing 
drives more AMOC variance than the leading EOF across time scales

“Perturbed ECCO” simulations run in a “flux-only” configuration to isolate contributions from different fluxes 
(Fukumori et al. 2021). 



In “perturbed ECCO” simulations removing heat flux patterns, 
the leading COF drives more AMOC variance than the leading EOF across time scales

“Perturbed ECCO” simulations run in a “flux-only” configuration to isolate contributions from different fluxes 
(Fukumori et al. 2021). 



Longer time scales of AMOC 
variability are reduced most 
and have greatest meridional 
extent



Longer time scales of AMOC 
variability are reduced most 
and have greatest meridional 
extent

Jackson et al. 2022



Might non-NAO, 
decadal-scale wind be 
important for meridional 
asynchrony?

Wind stress: leading 
stochastic optimals 

Leading COFs 

see e.g. Häkkinen et al. 2011; Barrier et al. 2014; Kim et al. 2016…
Jackson et al. 2022



Conclusions and future work 

Adjoints tell us what the ocean wants from the atmosphere. 
Atmospheric EOFs describe dominant atmospheric patterns. 
By combining adjoints and atmospheric statistics, we identify causal 
atmospheric structures that dominate ocean variability. 

When applied to AMOC on annual- and decadal-average time 
scales, a common NAO-like heat flux pattern dominates variance 
change across time scales and latitudes by reducing density anomaly 
amplitudes in the SPG. 

A related procedure permits smoothing adjoint sensitivities to reflect 
prior atmospheric covariances and additional observations of the 
atmosphere. These procedures are useful in state estimation 
(especially paleo!).  

Caveats: Linear sensitivities. Covariances assume stationary fluxes. 
Using a 1° ocean-only model. 

From Dafydd: Please reach out if you’re 
interested in setting up or running an ocean 

adjoint model! dafydd@ucar.edu

https://www.degreesymbol.net/
mailto:dafydd@ucar.edu

