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Process-oriented diagnostics of Earth system models

advances & & challenges for understanding the ocean’s
role in the climate system.
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The planet is warming and will continue to do so in the face of
unabated climate change.

2011-2020 was
around 1.1°C warmer
than 1850-1900
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Such a potentially large perturbation to the climate system is and
will have adverse impacts on humans & natural ecosystems.



Developing appropriate climate adaptation & mitigation strategies
requires a reduction in uncertainty in projected climate chinge.
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Developing appropriate climate adaptation & mitigation strategies
requires a reduction in uncertainty in projected climate change.
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Climate models do a pretty good job at capturing the observed

Increase in global average surface air temperature.

Change in Temperature (° C)
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Climate models do a pretty good job at capturing the observed
Increase in global average surface air temperature.

Assessing temperature pattern

projections made in 1989
Evaluating the Performance of Past Climate Ronald J. Stouffer” and Syukuro Manabe
Model Projections

Zeke Hausfather' | *, Henri F. Drake™* |, Tristan Abbott’ ', and Gavin A. Schmidt*
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Climate models published over the past five decades were generally
accurate in predicting global warming and the spatial distribution of
it in the years after publication.



At the regional scale & considering other climate variables outside of
the temperature response, confidence lowers, uncertainties rise,
and inter-model spread increases ....



Need for advanced and coordinated model evaluation
capabilities for improved model development and for better
interpretation of future projections.
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Climate Model Evaluation:

How well do climate models simulate aspects of the current mean climate
for which we have an observational constraint?

» Differences between modeled and observed indicate systematic errors.

« Show where and in what ways models are succeeding or failing at
reproducing the climate under current / past conditions.




Need for advanced and coordinated model evaluation
capabilities for improved model development and for better
interpretation of future projections.

Climate Model Evaluation:

How well do climate models simulate aspects of the current mean climate
for which we have an observational constraint?

« Differences between modeled and observed indicate systematic errors.
« Show where and in what ways models are succeeding or failing at

reproducing the climate under current / past conditions.

Mean-state

Observed change

Observed spatial and temporal variability
Modes of variability (ENSO, SAM, MJO ... etc.)




Climate Model Evaluation:

How well do climate models simulate aspects of the current mean climate
for which we have an observational constraint?

« Differences between modeled and observed indicate systematic errors.

« Show where and in what ways models are succeeding or failing at
reproducing the climate under current conditions

Intercomparison Makes fora 1997
Better Climate Model

PAGES 445-446, 451

Gerald A. Meehl, George J. Boer, Curt Covey, Mojib Latif,
and Ronald J. Stouffer

“Since simulation results are widely used to identify vulnerabilities and study
societal impacts that have policy implications, the simulation capabilities of
these models must be systematically assessed. CMIP fills this role. ”



Climate Model Evaluation:
How well do climate models simulate aspects of the current mean climate
for which we have an observational constraint?

« Differences between modeled and observed indicate systematic errors.

« Show where and in what ways models are succeeding or failing at
reproducing the climate under current conditions

Intercomparison Makes for a 197
Better Climate Model

PAGES 445-446, 451

Expansion to multi-model evaluation:

Evaluate different models

Gerald A. Meehl, George J. B Eva:uate dlffferent model versmnz | _
and Ronald J. Stouffer valuate performance acro_ss model generations
Evaluate response to forcings

“Since simulation results are widely used to identify vulnerabilities and study
societal impacts that have policy implications, the simulation capabilities of
these models must be systematically assessed. CMIP fills this role. ”



Climate Model Evaluation
How well do climate models simulate aspects of the current
mean climate for which we have an observational constraint ?

“Benchmarking”:
Performance Metrics (Scalar)
[ The symptom, the what ]
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“Benchmarking”: to compare a model
simulation to a standard (observational
constraint)

“Benchmark Experiment”: a critical test
that a model should pass to demonstrate its
viability as a tool to probe the climate
system (i.e., the CMIP historical experiment)



Climate Model Evaluation
How well do climate models simulate aspects of the current
mean climate for which we have an observational constraint ?

“Benchmarking”: Diagnostics
Performance Metrics (Scalar) Maps, timeseries,

[ The symptom, the what ] figl’:fs"a;)’g;i‘gfd

spectra, etc ....
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Climate Model Evaluation

How well do climate models simulate aspects of the current
mean climate for which we have an observational constraint ?

“Benchmarking”:
Performance Metrics (Scalar)

Diagnostics
Maps, timeseries,

“Process Oriented Diagnostics”:
[ The why ]

[ The symptom, the what ]

a) Global
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fields, power
spectra, etc ....

Helps “diagnose”
the scalar quantity.

00
00
00
v% | 1 |
S0
60

1

Gleckler et al., 2008

£.¢ , Taylor 2001

S %,
& ’”@

“Benchmarking”: to compare a model
simulation to a standard (observational

constraint)

“Benchmark Experiment”: a critical test
that a model should pass to demonstrate its
viability as a tool to probe the climate
system (i.e., the CMIP historical experiment)
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What’s out there already for model diagnostics?

Coordinated Model Evaluation Capabilities (CMEC)

U.S. DEPARTMENT OF ofﬁce Of
% 6 EN GY Science

!

!

ILAMB

The International Land Model
Benchmarking
(ILAMB) Package

The International Ocean
Model Benchmarking
(OLAMB) Package

@ravnr i,

Evaluation Project

PCMDI Metrics Package
(PMP)

7

* Mean Climate

* Benchmarking Simulated Precipitation
* El Nifio-Southern Oscitlation (ENSO)

* Extratropical Modes of Variability

* Madden-jullan Osclilation (M}O)

* Monsoon Characteristics (example)

Toolkit for Extreme Climate
Analysis (TECA)

Analyzing Scales of
Precipitation (ASoP)

Cyclone Metrics Package
(CyMeP)

Drought Metrics Package

The MDTF-Diagnostics Package
A Portable Framework for Weather and Climate Model Data Analysis

Specifically, Process-Oriented
Diagnostics (PODs)




What’s out there already for model diagnostics?

Coordinated Model Evaluation Capabilities (CMEC)

L

PCMDI Metrics Package
(PMP)

The International Land Model
Benchmarking
(ILAMB) Package

The International Ocean
Model Benchmarking
(OLAMB) Package

Toolkit for Extreme Climate
Analysis (TECA)

Analyzing Scales of
Precipitation (ASoP)

Cyclone Metrics Package
(CyMeP)

Drought Metrics Package

The MDTF-Diagnostics Package

Emphasis on software development :

A Portable Framework for Weather and Climate Model Data Analysis commun 'ty' based framework -

emphasizing code / diagnostics that are
maintainable, interoperable, and
portable.

Specifically, Process-Oriented
Diagnostics (PODs)

[PROCESS-ORIENTED EVALUATION

OF CLIMATE AND WEATHER
FORECASTING MODELS

Eric D. MaLoney, ANDRew GETTELMAN, Yi MING, J. DaviD Neeun, DANIEL BARRIE ANNARITA MARIOTTI,
C.-C. CHen, DanieLe R. B. CoLeman, Yi-Hung Kuo, BoHaAr SINGH, H. ANNAMALAL, ALExis BERG,
Jares F. BootH, Suzana J. Camarco, AiGuo Dal, ALex GONZALEZ, JAN HAFNER, XIANAN JIANG,
XIANWEN JING, DagHYUN KiM, ARUN KuMar, YumMin Moon, CaTHERINE M. Naup, Apbam H. Soset,
KentaroH Suzuki, FUCHANG WANG, JUNHONG WANG, ALusoN A. WING, Xinosiao Xu, AND MING ZHaO

Targets a specific physical process or emergent
behavior, with the goals of determining how
accurately the model represents that process,

ensuring that models produce the right

answers for the right reasons, and identifying
gaps in the understanding of phenomena.




What’s out there already for model diagnostics?

CMEC A community diagnostic and performance
metrics tool for routine evaluation of

U.S. DEPARTMENT OF Ofﬁce Of " .
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PCMDI Metrics Package
(PMP)

ESMValTool examples
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NOAA's MDTF




What’s out there already for model diagnostics?

CMEC » A community diagnostic and performance
T SYVNLILIIM  metrics tool for routine evaluation of
% @ENERGY Science Earth System Model Evalualion Tool Earth system models in CMIP
l ESMValTool examples

PCMDI Metrics Package
(PMP)

'he International Land Model
Benchmarking

(ILAMB) Package | Wf"’ 2

The International Ocean
Model Benchmarking
(OLAMB) Package

Toolkit for Extreme Climate
Analysis (TECA)

Analyzing Scales of
Precipitation (ASoP)

Cyclone Metrics Package
(CyMeP)

Drought Metrics Package

NOAA's MDTF




What’s out there already for model diagnostics?

CMEC - A community diagnostic and performance
. | G ot @ ESMValTool metrics tool for routine evaluation of
% @ENERGY Science Earth System Model Evalualion Tool Earth system models in CMIP
l ESMValTool examples
PCMDI Metrics Package ——:,: i
(PMP) 2

lhe International Land Model
Benchmarking

(ILAMB) Package ! Wf"’ 2

The International Ocean
Model Benchmarking
(OLAMB) Package

Toolkit for Extreme Climate
Analysis (TECA)

Analyzing Scales of
Precipitation (ASoP)

Cyclone Metrics Package
(CyMeP)

Drought Metrics Package

NOAA's MDTF




And many other on-going efforts on package development,
coordination, and standardization / best practices ....
(hoping to learn more from this meeting!)



And many other on-going efforts on package development,
coordination, and standardization / best practices ....
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The majority of existing performance metrics & process oriented
diagnostic focus on atmosphere, land, & the surface ocean




The majority of existing performance metrics & process oriented
diagnostic focus on atmosphere, land, & the surface ocean

Absorbs > 90 % of Absorbs > 25 % of
anthropogenic heat anthropogenic carbon & #
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Given the critical role of the ocean in the climate system and the
transient climate response, it is vital to accurately model
3D ocean processes from the air-sea interface to the ocean interior.
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Circumpolar Current Transport in Climate Models: Beyonc
thadiatBkéairigp )

PhD

Stephen Griffies, Graeme MacGilchrist, John Krasting,
Jan-Erik Tesdal, and Marion Alberty.

.



Why do we care about
the ACC?

Primary conduit for inter-basin
exchange

Vertical & horizontal structure
intimately tied to the transport

of heat, freshwater, nutrients,

and carbon between the

subpolar Southern Ocean and
mid-latitudes and from the

abyss to the surface

An emergent feature of the
complex dynamics of the
Southern Ocean ... it is a good
first-pass metric to look at to
assess model performance.




Multiple generations of climate models have struggled to accurately capture
the total transport of the ACC through the Drake Passage ....

CMIP3;
CMIP5:

GISS-E2-1-H 1
CanESM5 1
ACCESS-CM2 -
MIROCG 1
GFDL-ESM4 4
INM-CM5-0 -
UKESM1-0-LL 1
MCM-UA-1-0 1
MPI-ESM-1-2-HAM 1
ACCESS-ESM1-5 -
BCC-ESM1 4
MPI-ESM1-2-LR 1
SAMO-UNICON +
NorESM2-MM -
NorESM2-LM +
GISS-E2-1-G o
IPSL-CM6A-LR -
BCC-CSM2-MR 4
CESM2 -
GISS-E2-1-G-CC
CESM2-WACCM -
MRI-ESM2-0 +
GFDL-CM4 -
HadGEM3-GC31-LL -
NESM3 4

NorCPM1
EC-Earth3-Veqg -
CNRM-CM6-1
CNRM-ESM2-1 -

E3SM-1-0 4=
MIROC-ES2L ¢
CNRM-CM6-1-HR 1
HadGEM3-GC31-MM 1

INM-CM4-8 4

Donohue et al. 201
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Beadling et al., 2020
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Multiple generations of climate models have struggled to accurately capture
the total transport of the ACC through the Drake Passage ....

CMIP3;
CMIP5:

GISS-E2-1-H 1
CanESM5 1
ACCESS-CM2 -
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Larger fraction of models falling
within observational uncertainty
from CMIP3 to CMIP5 to CMIP6.

But ... are they actually
getting this total transport
“right” for the right
reasons?
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CMIP6 SSP5-85 Total Drake Passage Transport
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CMIP6 SSP5-85 Total Drake Passage Transport
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What insight on model performance and spread across CMIP6 models can
we gain from moving beyond the total and decomposing the total ACC
transport through the Drake Passage into various flow components?

GFDL - CM4 piControl
Total Velocity

<4dEET 002 Ty
-0.3 -02 -0.1 0 0.1 0.2 03
[m s77]

Total velocity
field



What insight on model performance and spread across CMIP6 models can
we gain from moving beyond the total and decomposing the total ACC
transport through the Drake Passage into various flow components?

GFDL - CM4 piControl
Total Velocity = - BT + TWT,

Bottom velocity Thermal wind

Total velocity transport transport

field



What insight on model performance and spread across CMIP6 models can
we gain from moving beyond the total and decomposing the total ACC
transport through the Drake Passage into various flow components?

GFDL - CM4 piControl
Total Velocity = - BT + TWT,

Bottom velocity Thermal wind

Total velocity transport transport

field



What insight on model performance and spread across CMIP6 models can
we gain from moving beyond the total and decomposing the total ACC
transport through the Drake Passage into various flow components?

GFDL - CM4 piControl
Total Velocity = ~ BVT + TWT, === (TWT, + TWTs )

500
-70 -68 66 64 62 60 -58 -5 54

Thermal wind transport Thermal wind
temperature transport salinity
contribution contribution

Bottom velocity Thermal wind

Total velocity
field transport transport



Depth [m]

Depth [m]

" Volume Transport [Sv]
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ACC breakdown in CM4X-p25/p125 development

Both configurations
diverge from CMIP6
in their temperature
contribution:

CM4X-p25 20 Sv >
CM4 CMIP6



Very large spread across CMIP6 models in the contribution from T

and S to thermal wind transport
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key points (ACC)

]+ Decomposing the total ACC transport can provide further
’ insight into understanding model performance and spread.

,, J+ CMIP6 models show a very large spread in the transport
contributions from temperature and salinity.

The CM4X configurations show clear differences in ACC
transport strength and variability relative to CMIP6 — mostly
linked to a stronger transport associated with meridional

temperature gradients.

Understanding this spread in mean-state representation and
how the individual components are projected to evolve may
allow us to constrain our understanding of future ACC
transport.



Overview:

Challenges & advances in diagnostic
capabilities for ocean processes



Challenges in diagnostic capabilities for ocean processes

A relatively (on climate timescales) short

and imperfect observational record. PIGREE TS
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1) 0T WAVIERS ~ 30 years (sparse prior to Argo!)

AMOC =< 20 years
Frajka-Williams et al., 2019

Polar processes temporally & spatially
sparse due to observational challenges.



Challenges in diagnostic capabilities for ocean processes

Challenges from a usability standpoint:

« complex horizontal grids

 varying vertical coordinates (layered, z-star, sigma, rho, hybrid)

« partial grid cells

* high computational cost with size of model output

« Many calculations must be done on native grids

« Crucial need to consider model drift in evaluation (requires piControl)

« Need for communication and coordination to ensure appropriate
diagnostics are saved and available.

\Partigl cel| topqgraphy algng equator in GM2.6,




Software advances to meet usability challenges
(analysis & education / training)

Intake-ESM

u\ N
@ python
— @y s

momlevel

Climatematch e

PANG=0

A community platform for Big Data geoscience




Moving Forward

Advanced and continued coordination between those developing
diagnostics & modeling centers.

Ensure availability of variables at appropriate time frequencies for
processes of interest.

Many diagnostic capabilities exist “in-house” at modeling centers and are
actively used for development ... need to avoid re-inventing the wheel
and make these open and interoperable with other models / in flexible
open-source languages.



Moving Forward

Advanced and continued coordination between those developing

diagnostics & modeling centers.

« Ensure availability of variables at appropriate time frequencies for
processes of interest.

 Many diagnostic capabilities exist “in-house” at modeling centers and are
actively used for development ... need to avoid re-inventing the wheel
and make these open and interoperable with other models / in flexible
open-source languages.

Continued development of standards and best-practices for
diagnostic development.



Moving Forward

Advanced and continued coordination between those developing

diagnostics & modeling centers.

« Ensure availability of variables at appropriate time frequencies for
processes of interest.

 Many diagnostic capabilities exist “in-house” at modeling centers and are
actively used for development ... need to avoid re-inventing the wheel
and make these open and interoperable with other models / in flexible
open-source languages.

Continued development of standards and best-practices for
diagnostic development.

Continued development on software side to handle increasing
size of observational datasets and high-resolution ocean model
output.
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and dlagnostlc development best practlces
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