

Process-oriented diagnostics of Earth system models advances & & challenges for understanding the ocean's role in the climate system.

Becki Beadling, PhD

2023 US CLIVAR SUMM

Part 1

Motivation for model evaluation, current capabilities, emphasizing need for process-oriented ocean diagnostics

Part 2

An example of development of processoriented diagnostics for circulation in the Southern Ocean

The planet is warming and will continue to do so in the face of unabated climate change.

Such a potentially large perturbation to the climate system is and will have adverse impacts on humans & natural ecosystems.

Developing appropriate climate adaptation & mitigation strategies requires a reduction in uncertainty in projected climate change.

Developing appropriate climate adaptation & mitigation strategies requires a reduction in uncertainty in projected climate change.

Climate models do a pretty good job at capturing the observed increase in global average surface air temperature.

Climate models do a pretty good job at capturing the observed increase in global average surface air temperature.

Climate models published over the past five decades were generally accurate in predicting global warming and the spatial distribution of it in the years after publication.

Evaluating the Performance of Past Climate Model Projections

Assessing temperature pattern projections made in 1989

0 0.6 Temperature (°C)

Ronald J. Stouffer1* and Syukuro Manabe2

At the regional scale & considering other climate variables outside of the temperature response, **confidence lowers, uncertainties rise, and inter-model spread increases** Need for advanced and coordinated <u>model evaluation</u> capabilities for improved model development and for better interpretation of future projections.

Need for advanced and coordinated <u>model evaluation</u> capabilities for improved model development and for better interpretation of future projections.

Climate Model Evaluation:

How well do climate models simulate aspects of the current mean climate for which we have an <u>observational constraint</u>?

- Differences between modeled and observed indicate systematic errors.
- Show where and in what ways models are succeeding or failing at reproducing the climate under current / past conditions.

Need for advanced and coordinated <u>model evaluation</u> capabilities for improved model development and for better interpretation of future projections.

Climate Model Evaluation:

How well do climate models simulate aspects of the current mean climate for which we have an <u>observational constraint</u>?

- Differences between modeled and observed indicate systematic errors.
- Show where and in what ways models are succeeding or failing at reproducing the climate under current / past conditions.

Mean-state Observed change Observed spatial and temporal variability Modes of variability (ENSO, SAM, MJO ... etc.)

Climate Model Evaluation:

How well do climate models simulate aspects of the current mean climate for which we have an <u>observational constraint</u>?

- Differences between modeled and observed indicate systematic errors.
- Show where and in what ways models are succeeding or failing at reproducing the climate under current conditions

Intercomparison Makes for a ¹⁹⁹⁷ Better Climate Model

PAGES 445-446, 451

Gerald A. Meehl, George J. Boer, Curt Covey, Mojib Latif, and Ronald J. Stouffer

"Since simulation results are widely used to identify vulnerabilities and study societal impacts that have policy implications, **the simulation capabilities of these models must be systematically assessed**. **CMIP fills this role**."

Climate Model Evaluation:

How well do climate models simulate aspects of the current mean climate for which we have an <u>observational constraint</u>?

- Differences between modeled and observed indicate systematic errors.
- Show where and in what ways models are succeeding or failing at reproducing the climate under current conditions

Intercomparison Makes for a ¹⁹⁹⁷ Better Climate Model

PAGES 445-446, 451

a statementaria da kona basarata puta a	Expansion to multi-model evaluation:
	Evaluate different models
Gerald A. Meehl, George J. B and Ronald I. Stouffer	Evaluate different model versions
	Evaluate performance across model generations
	Evaluate response to forcings

"Since simulation results are widely used to identify vulnerabilities and study societal impacts that have policy implications, **the simulation capabilities of these models must be systematically assessed. CMIP fills this role**."

Climate Model Evaluation

How well do climate models simulate aspects of the current mean climate for which we have an <u>observational constraint</u>?

"Benchmarking": Performance Metrics (Scalar) [The symptom, the *what*]

"Benchmarking": to compare a model simulation to a standard (observational constraint)

"Benchmark *Experiment***":** a critical test that a model should pass to demonstrate its viability as a tool to probe the climate system (i.e., the CMIP historical experiment)

Climate Model Evaluation

How well do climate models simulate aspects of the current mean climate for which we have an <u>observational constraint</u>?

"Benchmarking": Performance Metrics (Scalar) [The symptom, the *what*]

"Benchmarking": to compare a model simulation to a standard (observational constraint)

"Benchmark *Experiment***":** a critical test that a model should pass to demonstrate its viability as a tool to probe the climate system (i.e., the CMIP historical experiment)

Diagnostics Maps, timeseries, zonal-averaged fields, power spectra, etc

Helps "diagnose" the scalar quantity

ESMValTool (recipe ocean_ice_extent)

"Benchmarking": to compare a model simulation to a standard (observational constraint)

"Benchmark *Experiment***":** a critical test that a model should pass to demonstrate its viability as a tool to probe the climate system (i.e., the CMIP historical experiment)

ESMValTool (recipe ocean_ice_extent)

answers for the right reasons, and identifying gaps in the understanding of phenomena.

Analyzing Scales of Precipitation (ASoP)

Cyclone Metrics Package (CyMeP)

Drought Metrics Package

NOAA's MDTF

A community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP

ESMValTool examples

PCMDI Metrics Package (PMP)

The International Land Model Benchmarking (ILAMB) Package

> The International Ocean Model Benchmarking (OLAMB) Package

Toolkit for Extreme Climate Analysis (TECA)

> Analyzing Scales of Precipitation (ASoP)

Cyclone Metrics Package (CyMeP)

Drought Metrics Package

NOAA's MDTF

ESMValTool examples

recipe crem.ym

recipe_lauer13jclim.yml

20 20 20 20 20		
recipe_flato13ipcc.yml	recipe_perfmetrics_CMIP5.yml	recipe_ecs_scatter.yml
recipe flato13ipcc.yml	Atmosphere	

Blocking metric	cs and indices, teleconnections and weather regimes (MiLES)		
Clouds			
Evaluate water	vapor short wave radiance absorption schemes of ESMs with the		
observations, in	ncluding ESACCI data.		
Cloud Regime I	Cloud Regime Error Metric (CREM) Consecutive dry days Evaluate water vapor short wave radiance absorption schemes of ESMs with the observations.		
Consecutive dr			
Evaluate water			
observations.			
Diurnal temper	ature range		
Eady growth ra	Diagnostics of integrated atmospheric methane (XCH4)		
Extreme Event	Precipitation quantile bias		
Combined Clin	Quantifying progress across different CMIP phases		
Diagnostics of	Standardized Precipitation-Evapotranspiration Index (SP		
Ozone and ass	Drought characteristics following Martin (2018)		
Spatially resol	Stratosnhere - Autoassess diagnostics		
Hedroclimatic	Stratosphere - Autoassess diagnostics		
Ouiok insights	Land-surface Permafrost - Autoassess diagnostics		
Modes of varia	Land-surface Surface Radiation - Autoassess diagnostic		
Diagnostics of	Land-surface Soil Moisture - Autoassess diagnostics		
Precipitation q	Stratosphere-troposphere coupling and annular modes i		
Quantifying pr	Thermodynamics of the Climate System - The Diagnosti		
	Zend and Meddlevel Menne		

Radiation Budget

A community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP

L	and				
Landcover - Albedo					
Т	Irnover time of carbon over land ecosystems				
н	Hydrological models - data pre-processing				
н	Hydro forcing comparison				
L.	Ocean				
La	and an Recipe for evaluating Arctic Ocean				
R	Unoff, Climate Variability Diagnostics Package (CVDP)				
	Nino indices, North Atlantic Oscillation (NAO), Souther Oscillation Index (SOI)				
MiLES)	Ocean chlorophyll in ESMs compared to ESA-CCI observations.				
As with the	Ocean diagnostics				
As with the nane (XCH4) phases ion Index (SP8 D18) phostics ss diagnostics	Climate metrics Performance metrics for essential climate parameters Single Model Performance Index (SMPI) Future projections # Climate model Weighting by Independence and Performance (ClimWP) Constraining future Indian Summer Monsoon projections with the present-day precipitation over the tropical western Pacific Constraining uncertainty in projected gross primary production (GPP) with machine learning Context for Interpreting equilibrium climate sensitivity and transient climate response from the CMIP8 Earth system models Emergent constraints on equilibrium climate sensitivity in CMIP5: do they hold for CMIP6? Emergent constraints on equilibrium climate sensitivity from global temperature variability Emergent constraint on equilibrium climate sensitivity form global temperature variability Emergent constraint on snow-albedo effect Equilibrium climate sensitivity Emergent constraint on snow-albedo effect Equilibrium climate sensitivity Emergent constraint on equilibrium climate sensi				
agnostics	Multiple ensemble diagnostic regressia Multiple ensemble diagnostic regression (MDER) for constraining future austral jet position				
nular modes in	dices (ZMNAM) Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO.				
he Diagnostic	Tool TheDiaTo v1.0 Transient Climate Response Climate model projections from the ScenarioMIP of CMIP6 Climate Change Hotspot				

PCMDI Metrics Package (PMP)

The International Land Model Benchmarking (ILAMB) Package

> The International Ocean Model Benchmarking (OLAMB) Package

Toolkit for Extreme Climate Analysis (TECA)

> **Analyzing Scales of Precipitation (ASoP)**

Cyclone Metrics Package (CyMeP)

Drought Metrics Package

NOAA's MDTF

ESMValTool examples

recipe crem.ym

recipe_lauer13jclim.yml

Atmosphere

and the second second second second			
Blocking metric	cs and indices, teleconnections and weather regimes (MiLES)		
Clouds			
Evaluate water observations, in	Evaluate water vapor short wave radiance absorption schemes of ESMs with the observations, including ESACCI data. Cloud Regime Error Metric (CREM)		
Cloud Regime I			
Consecutive dry days			
Evaluate water observations.	vapor short wave radiance absorption schemes of ESMs with the		
Diurnal temper	ature range		
Eady growth ra	Diagnostics of integrated atmospheric methane (XCH4)		
Extreme Event	Precipitation quantile bias		
Combined Clin	Quantifying progress across different CMIP phases		
Diagnostics of	Standardized Precipitation-Evapotranspiration Index (SP		
Spatially resolution	Drought characteristics following Martin (2018)		
Heat wave and	Stratosphere - Autoassess diagnostics		
Hydroclimatic	Land-surface Permafrost - Autoassess diagnostics		
Quick insights	Land-surface Surface Radiation - Autoassess diagnostic		
Diagnostics of	Land-surface Soil Moisture - Autoassess diagnostics		
Precipitation q	Stratosphere-troposphere coupling and annular modes		
Quantifying pr	Thermodynamics of the Climate System - The Diagnosti		
	Zenal and Maridianal Maana		

Radiation Budget

A community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP

L	Land				
L	andcover - Albedo				
т	urnover time of carbon over land ecosystems				
H	lydrological models - data pre-processing				
	Linder foreign comparison				
· · · ·	hydro forcing companison				
L	^{andcov} Ocean				
L	and an				
R	Punoff				
``	Climate Variability Diagnostics Package (CVDP) 🔆				
	Nino indices, North Atlantic Oscillation (NAO), Souther Oscillation Index (SOI)				
MiLES)	Ocean chlorophyll in ESMs compared to ESA-CCI observations.				
An	Ocean diagnostics				
vis with the	Climate metrics				
	Climate metrics				
	Performance metrics for essential climate parameters Single Model Performance Index (SMPI)				
Is with the	dingle model Performance index (own)				
	Future projections #				
	Climate model Weighting by Independence and Performance (ClimWIP)				
nane (XCH4)	Constraining future Indian Summer Monsoon projections with the present-day precipitation				
	over the tropical western Pacific				
phases	Constraining uncertainty in projected gross primary production (GPP) with machine learning				
ion ladau (CDI	Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models				
ion index (SPI	Emergent constraints for equilibrium climate sensitivity				
018)	Emergent constraints on carbon cycle feedbacks				
	Emergent constraints on equilibrium climate sensitivity in CMIPs: do they hold for CMIP6? Emergent constraint on equilibrium climate sensitivity from olobal temperature variability				
nostics	Emergent constraint on snow-albedo effect				
	Equilibrium climate sensitivity				
ss diagnostic:	KNMI Climate Scenarios 2014 KNMI Climate Scenarios 2014				
agnostics	Multiple ensemble diagnostic regressi Multiple ensemble diagnostic regression (MDER) for constraining future austral jet position				
nular modes ir	ndices (ZMNAM) Projected land photosynthesis constrained by changes in the seasonal cycle of				
he Diagnostic	atmospheric CO2				
	Climate model projections from the ScenarioMIP of CMIP6				

And many other on-going efforts on **package development**, **coordination**, and **standardization / best practices** (hoping to learn more from this meeting!)

And many other on-going efforts on **package development**, **coordination**, and **standardization / best practices** (hoping to learn more from this meeting!)

The majority of existing performance metrics & process oriented diagnostic focus on atmosphere, land, & the <u>surface</u> ocean

The majority of existing performance metrics & process oriented diagnostic focus on atmosphere, land, & the <u>surface</u> ocean

Given the critical role of the ocean in the climate system and the transient climate response, it is vital to accurately model **3D ocean processes** from the air-sea interface to the ocean interior.

An Example

Process Oriented Diagnostics to Understand Antarctic Circumpolar Current Transport in Climate Models: Beyond the Jack Belang,) PhD

Stephen Griffies, Graeme MacGilchrist, John Krasting, Jan-Erik Tesdal, and Marion Alberty.

Why do we care about the ACC?

Primary conduit for inter-basin exchange

Vertical & horizontal structure intimately tied to the transport of heat, freshwater, nutrients, and carbon between the subpolar Southern Ocean and mid-latitudes and from the abyss to the surface

An emergent feature of the complex dynamics of the Southern Ocean ... it is a good *first-pass* metric to look at to assess model performance.

Multiple generations of climate models have **struggled to accurately capture** the *total transport* of the ACC through the Drake Passage

Multiple generations of climate models have **struggled to accurately capture** the *total transport* of the ACC through the Drake Passage

CMIP6 SSP5-85 Total Drake Passage Transport

CMIP6 SSP5-85 Total Drake Passage Transport

GFDL - CM4 piControl

Total Velocity

Total velocity field

Bottom velocity transport Thermal wind transport

Total velocity field Bottom velocity transport Thermal wind transport

Total velocity field

Bottom velocity transport

Thermal wind transport

Thermal wind transport temperature contribution

Thermal wind transport salinity contribution

ACC breakdown in CM4X-p25/p125 development

Both configurations diverge from CMIP6 in their temperature contribution: CM4X-p25 20 Sv >

CM4X-p25 20 5V 2 CM4 CMIP6

Very large spread across CMIP6 models in the contribution from T and S to thermal wind transport

key points (ACC)

- Decomposing the total ACC transport can provide further insight into understanding model performance and spread.
- CMIP6 models show a very large spread in the transport contributions from temperature and salinity.
- The CM4X configurations show clear differences in ACC transport strength and variability relative to CMIP6 – mostly linked to a stronger transport associated with meridional temperature gradients.
- Understanding this spread in mean-state representation and how the individual components are projected to evolve may allow us to constrain our understanding of future ACC transport.

Overview:

Challenges & advances in diagnostic capabilities for ocean processes

Challenges in diagnostic capabilities for ocean processes

A relatively (on climate timescales) short and imperfect observational record.

AMOC =< 20 years

Frajka-Williams et al., 2019

Argo (top 2000 m) since ~ 20 years Deep Argo (to 4000 m) since < 10 years Biogeochemical Argo (+ SOCCOM) < 10 years World Ocean Atlas ~ 30 years (sparse prior to Argo!)

Polar processes temporally & spatially sparse due to observational challenges.

Challenges in diagnostic capabilities for ocean processes

Challenges from a usability standpoint:

- complex horizontal grids
- varying vertical coordinates (layered, z-star, sigma, rho, hybrid)
- partial grid cells
- high computational cost with size of model output
- Many calculations must be done on native grids
- Crucial need to consider model drift in evaluation (requires piControl)
- Need for communication and coordination to ensure appropriate diagnostics are saved and available.

Software advances to meet usability challenges (analysis & education / training)

Moving Forward

- Advanced and continued coordination between those developing diagnostics & modeling centers.
- Ensure availability of variables at appropriate time frequencies for processes of interest.
- Many diagnostic capabilities exist "in-house" at modeling centers and are actively used for development ... need to avoid re-inventing the wheel and make these open and interoperable with other models / in flexible open-source languages.

Moving Forward

- Advanced and continued coordination between those developing diagnostics & modeling centers.
- Ensure availability of variables at appropriate time frequencies for processes of interest.
- Many diagnostic capabilities exist "in-house" at modeling centers and are actively used for development ... need to avoid re-inventing the wheel and make these open and interoperable with other models / in flexible open-source languages.

Continued development of standards and best-practices for diagnostic development.

Moving Forward

- Advanced and continued coordination between those developing diagnostics & modeling centers.
- Ensure availability of variables at appropriate time frequencies for processes of interest.
- Many diagnostic capabilities exist "in-house" at modeling centers and are actively used for development ... need to avoid re-inventing the wheel and make these open and interoperable with other models / in flexible open-source languages.

Continued development of standards and best-practices for diagnostic development.

Continued development on software side to handle increasing size of observational datasets and high-resolution ocean model output.

Thank you

Special acknowledgement to fellow CMIP7 Model Benchmarking Task Team members whom have been in active discussions regarding available diagnostic packages and capabilities, and to Dr. John Krasting at NOAA's Geophysical Fluid Dynamics Laboratory for discussions on the efforts of NOAA's Model Diagnostic Task Force and diagnostic development best practices.

Climate Model Benchmarking members

2022-	Co-lead	DLR	Germany
2022-	Co-lead	ORNL	USA
2022-	Member	Temple University	USA
2022-	Member	UK Met Office	UK
2022-	Member	PCMDI/LLNL	USA
2022-	Member	ISAC	Italy
2022-	Member	Climate Resource Pty Ltd	Australia
2022-	Member	SYSU & SML	China
2022-	Member	Jupiter Intelligence, Inc.	USA
2022-	Member	Environment Canada	Canada
2022-	Member	NCAR	USA
2022-	Member	University of Yaoundé I	Cameroon
2022-	Member	CMCC Foundation	Italy
2022-	Member	University of Reading	UK
	2022- 2022-	2022 Co-lead 2022 Member 2022 Member	2022-Co-leadDLR2022-Co-leadORNL2022-MemberTemple University2022-MemberUK Met Office2022-MemberPCMDI/LLNL2022-MemberISAC2022-MemberClimate Resource Pty Ltd2022-MemberSYSU & SML2022-MemberEnvironment Canada2022-MemberIniversity of Yaoundé I2022-MemberUniversity of Yaoundé I2022-MemberUniversity of Reading

rebecca.beadling@temple.edu