
The role of ocean processes in 
predictability of sea surface 

temperatures in the subpolar North 
Atlantic 

Martha W. Buckley (GMU)
marthabuckley@gmail.com

Collaborators
Tim DelSole (GMU)

Laurie Trenary (GMU)
Laure Zanna (NYU)



Climate predictions are needed on all time scales
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Chapter 11 Near-term Climate Change: Projections and Predictability
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Climate projection
A climate projection is a climate simulation that extends into the future based on a scenario of future external forcing. The simulations 
in Box 11.1, Figure 1 become climate projections for the period beyond 2005 where the results are based on the RCP4.5 forcing scenario 
(see Chapters 1 and 8 for a discussion of forcing scenarios).

Climate prediction, climate forecast
A climate prediction or climate forecast is a statement about the future evolution of some aspect of the climate system encompassing 
both forced and internally generated components. Climate predictions do not attempt to forecast the actual day-to-day progression of 
the system but instead the evolution of some climate statistic such as seasonal, annual or decadal averages or extremes, which may 
be for a particular location, or a regional or global average. Climate predictions are often made with models that are the same as, or 
similar to, those used to produce climate simulations and projections (assessed in Chapter 9). A climate prediction typically proceeds 
by integrating the governing equations forward in time from observation-based initial conditions. A decadal climate prediction com-
bines aspects of both a forced and an initial condition problem as illustrated in Box 11.1, Figure 2. At short time scales the evolution is 
largely dominated by the initial state while at longer time scales the influence of the initial conditions decreases and the importance of 
the forcing increases as illustrated in Box 11.1, Figure 4. Climate predictions may also be made using statistical methods which relate 
current to future conditions using statistical relationships derived from past system behaviour. 

Because of the chaotic and nonlinear nature of the climate system small differences, in initial conditions or in the formulation of the 
forecast model, result in different evolutions of forecasts with time. This is illustrated in Box 11.1, Figure 1, which displays an ensemble 
of forecasts of global annual mean temperature (the thin purple lines) initiated in 1998. The individual forecasts are begun from slightly 
different initial conditions, which are observation-based estimates of the state of the climate system. The thick green line is the average 
of these forecasts and is an attempt to predict the most probable outcome and to maximize forecast skill. In this schematic example, the 
1998 initial conditions for the forecasts are warmer than the average of the simulations. The individual and ensemble mean forecasts 
exhibit a decline in global temperature before beginning to rise again. In this case, initialization has resulted in more realistic values for 
the forecasts than for the corresponding simulation, at least for short lead times in the forecast. As the individual forecasts evolve they 
diverge from one another and begin to resemble the projection results. 

A probabilistic view of forecast behaviour is depicted schematically in Box 11.1, Figure 3. The probability distribution associated with 
the climate simulation of temperature evolves in response to external forcing. By contrast, the probability distribution associated with 
a climate forecast has a sharply peaked initial distribution representing the comparatively small uncertainty in the observation-based 
initial state. The forecast probability distribution broadens with time until, ultimately, it becomes indistinguishable from that of an 
uninitialized climate projection.

Climate predictability
The term ‘predictability’, as used here, indicates the extent to which even minor imperfections in the knowledge of the current state or 
of the representation of the system limits knowledge of subsequent states. The rate of separation or divergence of initially close states 
of the climate system with time (as for the light purple lines in Box 11.1, Figure 1), or the rate of displacement and broadening of its 

Box 11.1 (continued)

Box 11.1, Figure 2 |  A schematic illustrating the progression from an initial-value based prediction at short time scales to the forced boundary-value problem of 
climate projection at long time scales. Decadal prediction occupies the middle ground between the two. (Based on Meehl et al., 2009b.)

 (continued on next page)

Prediction: initialized with current
climate state (e.g., CMIP DP runs).

Interannual to decadal predictions require knowledge of:
• External forcing
• Initial conditions

• Chaotic nature of troposphere (~ 2 week predictability horizon)
• Knowledge of slower parts of climate system (ocean, cryosphere, land surface, stratosphere)

Projection: external forcing only. 



Predictability of Sea Surface Temperatures
Anomaly correlation  coefficient (ACC) for SST for CESM1-DPLE (40 members Init Nov. 1, 1954-2015) relative to ERSSTv5

Year 1-5 Year 3-7 Year 5-9 

Difference in ACC between initialized (CESM-DPLE) and uninitialized (CESM1-LE) simulations
Year 1-5 Year 3-7 Year 5-9    

Yeager et al. (2018)



Predictability of subpolar North Atlantic Sea Surface Temperatures
The subpolar North Atlantic is a region where ocean initialization increases skill of 
interannual to decadal SST predictions? (See also: Smith et al., 2019; Karspeck et al., 2014) 

Why is the subpolar North Atlantic a region where internal SST variations are predictable?

1. Deeper mixed layer depths (MLD)  result in higher predictability.
Null hypothesis of SST variability (Frankignoul & Hasselmann, 1977)

𝒅𝑻
𝒅𝒕
= 𝑭 − 𝑻

𝝉
𝝉 =

𝝆𝒐 𝑪𝒑 𝑫
𝜶

D=MLD, a=Damping parameter (~ 20 W m2 K-1)

2. Seasonal remergence of SST anomalies enhances predictability (Deser et al., 2003; 
Coetlogon and Frankignoul, 2003).

3. Slow changes in the ocean circulation enhance predictability.

• Variations in Atlantic Meridional Overturning Circulation (e.g., Yeager & Robson, 2017)

• Changes in strength & position of subtropical & subpolar gyres (Reintges et al., 2020). 



Time Scales
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⇢⌧ = e�|⌧ |/⌧d . (2)

Substituting this ACF into (1) and integrating yields

T1 = ⌧d. (3)

Thus for exponential decay, T1 equals an e-folding time scale. The discrete version of T1 is
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1
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1X
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For a first order autoregressive process,
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1� �
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Note that the ACFs are equal if
� = e�1/⌧d . (7)

Substituting this into the discrete version of T1 and taking the limit of large ⌧d gives
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1� e�1/⌧d
⇡ 1

2

1 + (1� 1/⌧d)
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This demonstrates that the discrete and continuous version of T1 agree in the limit of large
⌧d (i.e., the limit of long memory).
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T2 =

Z 1

�1
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For the Gaussian, Markov process (2),

T2 = ⌧d. (10)

Thus for exponential decay, T1 and T2 agree. The discrete version of (9) is

T2 = 1 + 2
1X

⌧=1

⇢2⌧ . (11)
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Quantifying predictability of internal SST variations

SST
w

1. Compare skill of ensemble of initialized predictions to that of ensemble of 
uninitialized projections (external forcing only). 

2. Statistical measures of predictability of SST
• Can be estimated from observations or control/historical simulations of 

models (Branstator et al., 2012, DelSole et al., 2013; Newman, 2013).
• Measure discussed in this talk: decorrelation timescale (DelSole, 2001)

• 𝑻𝟐 = ∑𝒌#$%% 𝝆𝒌𝟐, 𝐰𝐡𝐞𝐫𝐞 𝝆𝒌 is the autocorrelation function at lag k . 
• Wintertime SST from observations and models:

• Gridded SST observations (1945-2020, HadISST, ERSST): regress out 
global mean SST to remove forced signal.

• Preindustrial control integrations (500 years +)
• Historical large ensembles (1920-2021): remove ensemble mean to 

remove forced signal. Work in progress.
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Decorrelation timescales for wintertime SST

Black contours:
D at 500, 1000, 
1500m.

• T2 is longest in the subpolar North Atlantic (Buckley et al., 2019). 
• T2 is highest southeast of Greenland, despite modest MLDs in this region.
• T2 is low in the Labrador Sea despite deep MLDs.  

Mean T2
from 
ERSST and  
HadISST.

Black contours:
Annual mean 
climatological MLD 
at 200, 400 m

Mean T2
from 11 
CMIP6 
models.

GFDL ESM4, 
CESM2, 
CESM2-FV2, 
CESM2-
WACCM-FV2, 
MRI-ESM2-0, 
MPI-ESM1-2-
HR, MPI-ESM-
1-2-LR, MPI-
ESM1-2-HAM, 
BCC-CM2-MR, 
HadGEM3, 
UKESM1-0-LL, 
FGOALS-g3

Exclude 
models with 
ice covered 
Labrador Sea.
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Impact of ocean dynamics on predictability of wintertime SST

•Ocean dynamics reduce T2  in the Labrador Sea.
•Ocean dynamics increase T2 in the central subpolar gyre and southeast of the 
Grand Banks. 

Compare T2 from preindustrial control simulations of CESM1 fully coupled model (FCM) and 
model in which atmosphere coupled to motionless slab (SOM). Slab depth=annual mean MLD.

𝝉 =
𝝆𝒐𝑪𝒑𝑫
𝜶

Black contours:
mean MLD/SOM 
depth at 200, 
400 m
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CMIP6 models: comparison to the Hasselmann model

Black contours:
Annual mean 
MLD/slab depth  
at 200, 400 m

• Labrador Sea: T2  in CMIP6 models is less than predicted by Hasselmann model, 
suggesting ocean dynamics reduce predictability in the Labrador Sea.
• Central subpolar gyre and southeast of the Grand Banks:       
• T2  in CMIP6 models is larger than predicted by Hasselmann model, suggesting ocean 

dynamics increases predictability in these regions.
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Observations: comparison to the Hasselmann model

Black contours:
Annual mean 
MLD/slab depth  
at 200, 400 m

• Labrador Sea: T2  in observations is less than predicted by Hasselmann model, suggesting 
ocean dynamics reduce predictability in the Labrador Sea

• In central subpolar gyre:  T2  in  observations is larger than predicted by Hasselmann
model, suggesting ocean dynamics increases predictability in these regions.
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Predictability in central subpolar gyre: role of reemergence

Seasonal ACF suggests 
reemergence of 
wintertime SST anomalies 
in the central subpolar 
North Atlantic.
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Initialized predictions of upper ocean heat content in subpolar gyre
Running 5-year mean SPNA upper ocean heat 
content (UOHC, to 295 m depth) from 
• Blue: EN4 observations  
• Black: reanalysis forced ocean-ice simulations 

(FOSI). 
• Red: CESM decadal prediction large ensemble 

(DPLE)
• Grey: CESM-Large Ensemble (LE). 
• The SPNA region is defined  as 45°W–20°W, 

50°N–60°N (same box as previous slide).

• 5-year mean UOHC in SPNA is well predicted.
• Little degradation of skill with lead time.
• Rapid decrease in UOHC after 2015 not well 

predicted, see E. Maroon’s talk.  

2257The abyssal origins of North Atlantic decadal predictability  
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-stati on-based ); (2) upper ocean heat content from the UK 
Met Office EN4.2.1 gridded ocean temperature product 
(Good et al. 2013); and (3) gridded mean sea level anom-
aly from multi-satellite altimetry observations obtained 
from Copernicus Marine Environment Monitoring Service 
(CMEMS; http://marin e.coper nicus .edu).

3  Results

3.1  Subpolar North Atlantic upper ocean heat 
content

Numerous studies have linked observed, multidecadal vari-
ations in SPNA upper ocean heat content (UOHC) to the 
delayed ocean dynamical response to NAO forcing (for a 
review, see Yeager and Robson 2017). A steady increase in 
winter NAO forcing from the early 1960s to the mid 1990s 
was accompanied by a decrease in SPNA UOHC, and an 
abrupt shift to weak NAO in the period from 1996 to 2012 
corresponds to an anomalously warm period of the SPNA 
(Fig. 1). The FOSI simulation faithfully reproduces much of 
the observed variability in UOHC in the region albeit with 
a standard deviation that is too high compared to the EN4 
data (0.55 °C compared to 0.37 °C). The CESM-DPLE skill-
fully predicts the evolution of annual mean SPNA UOHC 
out to decadal lead times (Fig. 1), particularly when verified 
against FOSI. This potential predictability (i.e., the ability 
of DPLE to reproduce FOSI) is the primary focus here that 
will permit tentative mechanistic attribution.

The high SPNA skill is associated with accurate ensem-
ble mean forecasts of anomalously cold conditions between 
1965 and 1995, warm conditions between 1996 and 2015, 
and the abrupt mid-1990s transition between these regimes. 
Although CESM-DPLE exhibits a cooling trend between 
2010 and 2020 at all lead times (Fig. 1), the observed abrupt 
transition to anomalously cold conditions in the SPNA after 
2015 is not well predicted. This behavior is the topic of 
ongoing investigation and is believed to be related to a fail-
ure to predict the highly anomalous surface fluxes in the 
winters of 2013/2014 and 2014/2015 that contributed to the 
intensity of the 2015 cold anomaly in the SPNA (e.g., Josey 
et al. 2018; Yeager et al. 2016). Unsmoothed (annual mean) 
data reveal that SPNA UOHC has rebounded to only slightly 
negative conditions in the last couple of years (Fig. ES3 in 
Online Resource 1), which has substantially reduced, but not 
eliminated, the discrepancy between recent CESM-DPLE 
hindcasts and observations.

CESM-DPLE exhibits very little degradation in SPNA 
UOHC skill as lead time increases (Fig. 1). The correla-
tion score for lead years 1–5 (LY1-5) is 0.87 when veri-
fied against FOSI (0.58 when verified against EN4). The 
score for LY5-9 is only slightly lower at 0.84 (0.53). The 

amplitude of the UOHC signal and the timing of the mid-
1990s transition appears little changed between LY1-5 and 
LY5-9. Furthermore, the ensemble signal-to-noise character-
istics (quantified in terms of predictable variance fraction or 
PVF; see Sect. 2.3.1) are also very stable. Direct comparison 
of 
√
PVF with FOSI correlation scores reveals that RPC < 

1 for SPNA UOHC at all lead times, with the spread-based 
metric suggesting that more than 80% of variance in SPNA 
UOHC remains potentially predictable even out to LY5-9. 

(c)

(b)

(d)

(a)

Fig. 1  a Station-based winter (DJFM) NAO index. b Running 5-year 
mean SPNA upper ocean heat content (to 295  m depth) from EN4 
observations (blue), FOSI (black), CESM-DPLE (red; average over 
lead years 1–5), and CESM-LE (grey). The SPNA region is defined 
as 45°W–20°W, 50°N–60°N (see black box in Fig.  3). The shad-
ing around CESM-DPLE and CESM-LE curves represents ensem-
ble uncertainty ( ±1! ). Correlations (and corresponding p-values) 
are given for CESM-DPLE verified against FOSI (black) and EN4 
(blue). The square root of the predictable variance fraction ( 

√
PVF ; 

see Sect. 2.3.1) is given for CESM-DPLE (red) and CESM-LE (grey), 
thus permitting direct comparison to correlation values. c, d Same as 
b but showing lead years 3–7 and 5–9, respectively

Upper ocean heat content predictions

Yeager (2020)
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Predictability in central subpolar gyre:  role of ocean heat transportGeophysical Research Letters 10.1002/2015GL065364

Figure 2. Variations in large-scale Atlantic circulation, poleward heat transport, and winter sea ice extent. As in Figure 1
but showing the following: (a) Barotropic stream function averaged over the Grand Banks region (note that more
negative values indicate stronger cyclonic circulation); (b) ocean poleward heat transport across 50∘N in the Atlantic;
(c) SST in the central subpolar gyre region (45∘W–10∘W; 50∘N–60∘N); (d) Northern Hemisphere winter (JFM) sea ice
area over the whole Arctic (40∘N–82∘N); (e) Northern Hemisphere winter (JFM) sea ice area over the Atlantic sector
(90∘W–90∘E; 40∘N–82∘N). Anomalies are relative to the following climatologies: 1964–2013 (Figures 2a–2c), and
1979–2013 (Figures 2d and 2e). The purple dashed curves show the ensemble mean of the six-member uninitialized
CESM 20C simulations.

4. Ocean-Driven Trends in Arctic Sea Ice Extent

The CESM DP system offers evidence that the rapid Arctic sea ice loss observed between about 1997 and
2007 was related to the very anomalous ocean heat transport that contributed to the rapid mid-1990s
warming of the SPG and the early 2000s warming of the Nordic Seas. The 5–7 year forecasts show sig-
nificant skill at reproducing the accelerated rate of winter sea ice loss over this time period (Figures 2d
and S4f; r(DP,OBS) = 0.91, MSSS(DP,OBS)=0.82), most of which occurred in the Atlantic sector (Figures 2e
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3 year running mean anomalies of:
(a) Grand Banks gyre strength
(b) Heat transport across 50oN
(c) Subpolar gyre SST (SPG SST)

• Black curves: reanalysis forced ocean-
ice model (CORE).

• Blue curves: observational estimates
• Red curves: the CESM DP averaged over 

the 5–7 year forecast period.
• Purple dashed curves: ensemble mean 

of the six-member uninitialized CESM 
20C simulations.

SST anomalies in subpolar North Atlantic:
• connected to ocean circulation 

anomalies near the Grand Banks.
• Ocean heat transport variations at 50oN.  Yeager et al (2015)
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Initialized predictions show low skill in Labrador Sea
a) Forcing and watermass formation:

• Blue line (right axis): winter NAO
• Green line (left axis): NADW 

formation rate

b) 3 year running mean anomalies of 
upper 1500 m Labrador Sea density.

• Black curves: reanalysis forced 
ocean-ice model (CORE).

• Blue curves: observational 
estimates

• Red curves: the CESM DP averaged 
over the 5–7 year forecast period.

Yeager et al (2015)

Geophysical Research Letters 10.1002/2015GL065364

Figure 1. Formation and propagation of buoyancy-forced water mass anomalies. (a) Annual rate (Sv (sverdrup);
1 Sv = 106 m3 s−1) of surface formation of NADW (!0 > 27.6 kg m−3) over the subpolar North Atlantic (60∘W–20∘E;
50∘N–90∘N) diagnosed from observed atmospheric and oceanic surface fields (thick green curve) and the winter
(DJFM, December–March) NAO index (thin blue curve, right axis). The remaining panels show 3 year running mean
anomalies from CORE (black curves), the CESM DP averaged over the 5–7 year forecast period (red curves and shading
are ensemble mean and minimum/maximum range, respectively), and various observational time series (blue curves;
see Text S3 in the supporting information for details). Apart from the winter NAO in Figure 1a, all time series are
based on annual mean data. (b) Upper 1050 m density anomaly (!0; 10−2 kg m−3) in the central Labrador Sea region
(56∘W–49∘W; 56∘N–61∘N). Note that for these observations, the region of spatial averaging is ill defined because of the
sparse measurements. (c) SSH (cm) in the central Labrador Sea, with satellite observations averaged over the same box
region (note that the y axis is inverted). (d, e) Same as Figures 1b and 1c but for a region to the east of Grand Banks
(50∘W–35∘W; 40∘N–50∘N). Anomalies are relative to the following climatologies: 1964–2013 (green, black, and red
curves), 1964–2010 (blue curve in Figure 1b), and 1993–2010 (blue curves in Figures 1c and 1e). Geographical regions
are shown in Figure S1.
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Decadal predictions do not show skill in 
predicting Labrador Sea density.
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Recap
1. Atlantic SST predictability is longest in the subpolar gyre.

2. Ocean dynamics enhances SST predictability in central subpolar gyre.
• Reemergence of SST anomalies (e.g., Duchez et al., 2016). 

• Variations in the Atlantic Meridional Overturning Circulation & gyre circulation (e.g., Keil et al., 
2020). 

3. Ocean dynamics reduces SST predictability in the Labrador Sea 
• Large, unpredictable interannual MLD variations reduce SST predictability.

• Potential role for mixing processes, including lateral restratification by eddies (e.g., Jones and 
Marshall, 1997). 

• Strong atmospheric forcing by NAO (Yeager et al., 2012, 2012, 2020), which is largely 
unpredictable.

• Note: recent studies suggest NAO may be more predictable than models indicate (Signal to 
noise paradox; e.g., Eade et al., 2014; Scaife & Smith, 2018).
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