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  AI2 Climate Modeling ML group 

Philanthropic project of the Allen estate, at Vulcan (2019-2021) and now at AI2. 

● Goal:  Halve climate model uncertainty about 21C regional precipitation trends

● Strategy: Make coarse-grid climate models better using fine-grid models as reference

Partnered with NOAA/GFDL, developers of a 3-km version of FV3GFS global weather model

Ongoing collaborations with other R&D groups (e.g. NVIDIA, LLNL) and summer interns



  How can ML help weather and climate models?

Make global weather and climate models: 

● accurate

● faster 

● affordable

Three general strategies:

● Hybrid: Replace or correct parts of the climate model, e.g. physics parameterizations

● Full model emulation (FME): ML of entire global atmospheric evolution

● Flexible, nonlinear bias correction



  Corrective ML to improve coarse-model simulations

Climate model (25-200 km) High fidelity reference:
observations or 

fine-grid (3 km) simulation

Train corrective ML to 
make temperature, 
humidity, winds of the 
coarse model track
reference data. 

3-hrly nudging tendencies are interpreted as a needed correction to the physical parameterizations and coarse-grid dynamics 



  Fine-grid reference model:
accurate simulations across a range of climates

3 km grid gives a better rainfall simulation over land than 200 km:
● Enabled by explicit simulation of cumulonimbus clouds & well-resolved mountains
● The 3 km model resolves variability that requires subgrid parameterization in GCMs

3 km model is expensive & imperfect but enables 1+ yr simulations in multiple climates

(GPCP)

Bretherton et al. 2022, JAMES
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  ‘Nudge to fine’: ML offline evaluation

Nudging tendencies show systematic 
errors of coarse model vs. reference.

The ML schemes produce a smoothed, 
lower-amplitude, unbiased version of the 
noisy nudging tendencies

Target nudging tendency Corrective ML tendency

Watt-Meyer et al. 2021

Bretherton et al. 2022



  Challenge of hybrid ML coupled to other components

Coupled to fluid dynamics

and parameterized physics
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  Corrective ML results (200 km coarse, 3 km fine)

Presented to POS panel in 10/2022 by Oli Watt-Meyer:

● ML corrections trained using reanalysis reference (Watt-Meyer et al. 2021) add a day 
of forecast skill and improve mean surface precipitation patterns over land 20%

● ML corrections trained with 3 km GSRM reference improve land surface precipitation 
20-30% (Bretherton et al. 2022, Kwa et al. 2023) and retain multiyear stability

● ML corrections to 200 km coarse model trained using 25 km AGCM reference across 
a range of climates specified using -4K, 0, 4K and 8K SST increments improve surface 
temperature and precip patterns by 10-30% in all climates (Clark et al. 2022)



  Further climate bias reductions are ongoing 

● With ML correction of u&v as well as T&q, annual-mean pattern biases of baseline 

are reduced 50% for surface temperature and 30% for surface precipitation. 
ML-corrected bias No-ML baseline bias

Further improvements
attainable using 
out-of-sample 
detection (Sanford et al. 
2023) and better 
coarsening algorithms



  Can we improve on nudging-based corrective ML for climate? 

● Corrective ML trained on nudging tendencies improve forecast skill and land surface 
precipitation/temperature climatology of a coarse-grid global climate model by O(50%)

● It is physically interpretable and obeys mass, heat,  and moisture conservation

● To make a really attractive emulator of a reference model, we must further reduce its 

climatological biases vs. reference target. This is challenging using our corrective ML

● We are thus investigating promising new approaches: 

○ FME (e.g. FourCastNet, Pangu, GraphCast, ClimaX) - we have stable 10 year simulations

○ Hybrid reservoir computing (Arcomano et al. 2022, 2023)

○ CycleGAN post-processing of coarse model precipitation fields (McGibbon et al. 2023)



  CycleGAN precipitation morphing (200 km->25 km)

Zhu et al. 2017

Mean annual precipitation bias almost perfectly removed across range of climates

(McGibbon et al. 2023)



  Outlook

Hybrid:

● Can substantially improve climate relative to a reference
● Can be made fast
● Harder to efficiently train
● Easier to diagnose and enforce conservation laws

FME:

● Transformationally fast; better use of ML 
● Skillful for weather
● Climate accuracy/stability in progress

ML (e.g. CycleGAN) is also a powerful tool for post-hoc bias correction

These tools may revolutionize applications-oriented climate modeling


