Using Saildrone USVs to validate OSCAR Surface Currents in the Western Arctic Marginal Seas

Nan-Hsun Chi¹, Dongxiao Zhang¹², Chidong Zhang¹

¹ NOAA PMEL, ² University of Washington / CICOES

Motivation

- Western Arctic marginal Seas undergo large seasonal variation and sensitive to the warming climate
- One of the most challenging but critical to observe in the world's ocean
 - Sea ice
 - Shallow depths
- Saildrones provide a unique opportunity to validate the OSCAR satellite-derived surface currents

Chiodi et al. 2021

Data

- OSCAR (Ocean Surface Currents Analyses Real-time) currents
- Dohan & Kathleen 2021 Bonjean & Lagerloef 2002

- Nominal depth: 15 m

Final V2.0: ¼ degree, 1-day

- Satellite-derived current product (SSH, surface vector wind and SST from the various satellites and in situ instruments)
- Model formulation: combines geostrophic, Ekman and thermal wind dynamics
- Saildrone currents 2018, 2019 Arctic Saildrone Mission
 - 2018: July ~ Sept, 5-min
 - 2019: mid-May ~ Oct, 5-min → mean vehicle speed 0.96 m/s ~ 83 km/day
 - 4 m to the 100 m depth (depending on bathymetry, echo intensity,...) Chiodi et al. 2021
 - QC & De-tide (AVISO FES 2014 tides database)

https://www.aviso.altimetry.fr/

0.5-m T & S from 6 saildrone during 2019 Arctic Saildrone Mission

OSCAR (¼ deg - 1 day) 15 m & saildrone (along track 5 min) 10-20 m mean currents

OSCAR (1/4 deg - 1 day) 15 m & saildrone (to OSCAR grid) 10-20 m mean currents

Wind rose plot for collocated vectors (OSCAR & saildrones (2267 pairs)) in 2018 (1020, 1021) & 2019 (1035, 1036, 1037)

Cold fresh surface waters (127)

Upstream Barrow Canyon

OSCAR: 07/04 SDs: 06/27-07/09

Chukchi Slope Current

OSCAR: 07/25 SDs: 07/20-07/31

Upstream Barrow Canyon (144)

Stats between OSCAR (1/4 deg - 1 day) & saildrone (to OSCAR grid) in 2019

	Bias (OSCAR-SD) of current speed	RMSD of current speed	Current vector correlation
Overall	-5 cm/s	11 cm/s	R> 0.38: 71% R < 0.38: 13% R< -0.38: 16%
Strong current (> 30 cm/s)	-19 cm/s	23 cm/s	R> 0.38: 89% R < 0.38: 5% R< -0.38: 6%
Weak current (< 10 cm/s)	0.8 cm/s	5 cm/s	R> 0.38: 57% R < 0.38: 18% R< -0.38: 25%
Cold fresh surface waters (T< 2C, S< 27 psu)	-3.2 cm/s	8 cm/s	R> 0.38: 43% R < 0.38: 24% R< -0.38: 32%

Summary

- Present rarely measured upper ocean measurements from saildrone USVs in the Bering and Chukchi Sea shelf and Beaufort Sea.
- The overall speed differences for the collocated OSCAR vs. saildrones is notable: OSCAR < saildrones by O(10 cm/s)
- Large speed differences O(20 cm/s) but high vector correlation often occurs for stronger currents.
- Low vector correlation is often observed for weak currents and at the cold fresh regimes.
- Future plans:
 - Explore the feasibility of combining OSCAR and satellite T/S to investigate surface Pacific water inflow. This preliminary study serve as a benchmark to understand the uncertainties of the future study.

Thank you

OSCAR (¼ deg - 1 day) 15 m & saildrone (to OSCAR grid) 10-20 m mean currents

