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Ocean Color in the Coastal Ocean: The Problem

e Chlorophyll (Chl) and inherent optical properties (IOPs) are proxies of
biogeochemical processes in the ocean

AGU Ocean Sciences Meeting
San Diego Convention Center ’
e 16 - 21 February 2020

e Can be accurately estimated from satellite ocean color in many regions
of the world ocean = band ratio & semi-analytical algorithms

Landsat 8 / OLI image
18 January 2020

e However, frequently not able to quantitatively utilize satellite
ocean color in a variety of scenarios, e.g.:

- model assumptions violated

- difficulty in removing the atmospheric contribution to the



https://oceancolor.gsfc.nasa.gov

Ocean Color

L: - top of atmosphere radiance

water-leaving signal
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Ocean Color

L: - top of atmosphere radiance

satellite
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Atmospheric Correction of Ocean Color




Atmospheric Correction of Ocean Color

Ocean colour dominated by Optically complex - other optically
chlorophyll - other optically active water constituents do not
active constituents covary covary with chlorophyll

continuum
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Atmospheric Correction Produces Negative Reflectance
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‘Too much’ atmosphere subtracted => negative reflectance

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022



Pixels near coastlines are frequently flagged for failing
atmospheric correction

Example of MODIS-derived chlorophyll distribution
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Article

Evaluation of MODIS-Aqua Atmospheric Correction
and Chlorophyll Products of Western North American
Coastal Waters Based on 13 Years of Data

16-FEB-08

Tyson Carswell 1'* {2/, Maycira Costa 1'*, Erika Young !, Nicholas Komick 2, Jim Gower 3 and
Ruston Sweeting

Carswell et al. (2017). Remote Sensing, 9, 1063, https://doi.org/
10.3390/rs9101063

0
oh
o
o
<
o
=

09-SEP-08

Chlorophyll (mg m’) IR,

0051 2 3 4 7 2060

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022



An Alternative Approach

3. Model to estimate

|IOPs/Chl
2. EOF analySIS Multiple linear regression

l A

stepwise selection
of EOF scores

Response

450 500 550 600 650
wavelength (nm) : >

14
m

Predictor variables

c.f. Craig et al. (2012), Remote Sensing of Envitonment, 119, 72-83

e Don’t try to remove the atmosphere’s contribution
e Use EOF analysis to detect the underlying variance due to water signals
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Geographical Distribution of Data Points Used in Model Development



https://seabass.gsfc.nasa.gov/

Results - EOF Analysis of Top of Atmosphere (TOA) Spectra

‘TE Cross-validation statistics

| < A(nm) [r2(N=163)| RMSE
Ak 3 412 0.801 | 0.178
=" g 443 0.808 0.169
T~ D 490 0.825 0.164
g g 510 0.811 0.187
<" o 555 0.706 0.301
IC_) £ 670 0.867 | 0.204

N = 163, training:test 80:20, 5000 trials

-2 -1

10

e Very similar statistics
compared with model fitted to
entire dataset

e Robust, likely not overtrained

in situ apn(A) (m-1)

apn: optical metric of
phytoplankton biomass

measured
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Sensitivity Analysis - variable atmosphere
& water constituents
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e Synthetic dataset created using a coupled ocean-atmosphere radiative transfer model
e Variable IOPs (c.f IOCCG Report No.5), variable AOD (1), & absorbing aerosols
e TOA-EOF models derived for IOPs & Chl

e Found to perform well & cross-validation suggested robust, generalizable models
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Approach evolved into Bayesian machine learning model

Erdem Karakoylu - Data Science Consulting

_ Bayesian Models for Deriving Biogeochemical
;. . Information from Satellite Ocean Color

Susanne E. Craig'? and Erdem M. Karakéylii'*

1Ocean Ecology Laboratory, NASA Goddard Space Flight Center; 2Universities Space Research Association; ®Science Applications International Corporation

';‘ 3 Craig and Karakéylii (2019), Earth ArXiv, https://eartharxiv.orq/
repository/dashboard/557/10.31223/osf.io/shp6y
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Bayesian Machine Learning Approaches

 The ocean is chronically under sampled => sparse data => overfitted, non-generalizable
models

* Bayesian machine learning approaches:
Intrinsically mitigate overfitting

Principled modeling approach - allows the inclusion of prior knowledge:

* Requires a close collaboration between the domain specialist and the data
scientist

* Embrace what the human practitioner knows about the system

Can integrate measurement uncertainty to give more accurate overall uncertainty
estimation - probability distributions come for free

Readily adaptable to the ‘clustering’ that often occurs in nature

Model can be updated as more labeled data is collected - satellites, in situ
campaigns, autonomous assets
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Bayesian Neural Network for IOP Prediction from TOA Spectra

e Same NOMAD SeaWiFS-to in situ dataset used
e Models derived for spectral phytoplankton
absorption, apn(A)
e Built for automatic relevance determination
e Model features:
+ EOFs of TOA spectra, as in original models
+ Metrics of latitude & longitude
+ Day of year
+ Sea surface temperature
+ Bathymetry

Inference diagram of the Bayesian NN

Bayesian Models for Deriving Biogeochemical
Information from Satellite Ocean Color

Susanne E. Craig"” and Erdem M. Karakoylii'*

1 Ocean Ecology Laboratory, NASA Goddard Space Flight Center; 2Universities Space Research Association; ®Science Applications International Corporation

Earth ArXiv (2019), https://eartharxiv.org/repository/dashboard/557/10.31223/0osf.io/shp6y
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Results - Bayesian Neural Network for a,n(A)

e Out-of-sample observed vs. prediction mean
a¢ band; r?; mae )
411; 0.86; 0.09 e R2(A) 2 0.8

443: 0.83; 0.09

480; 0.87: 0.08 e Mean absolute error(A) = 0.08-0.15

510; 0.91; 0.08 .
555; 0.84; 0.15 - e Accurate estimate at blue wavelengths

670: 0.92: 0.10 :

* In conventional approaches,
atmospheric correction is the most
challenging in the blue
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Comparison with a Conventional Semi-Analytical Model

A Semi-analytical - GIOP

model 411; mae=0.28
443; mae=0.24

489: mae=0.23 |
510; mae=0.25 A
555; mae=0.31§
670; mae=0.31

 BNN trained with a test dataset

 Same test data used in GIOP
model]

 BNN performs significantly

better - especially at blue . 411; mae=0.08

443: mae=0.081 HK EEVGHENR
WaVE|engthS 489; mae=0.07 neural net
510; mae=0.08
559; mae=0.22
670; mae=0.11

20 —-15 —1.0
Prediction

A\
JAN
A
A
A
A

GIOP model - default configuration
(Werdell et al. (2013). Applied Optics, 52, 2019)
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Take Home Messages

e Bayesian neural network models were able to accurately estimate optical
biomass proxy (and Chl - not shown) from top of atmosphere spectra

- Standard atmospheric correction was not required
- Particularly relevant for coastal, inland and optically complex

waters
e Bayesian neural networks:
- Provide robust estimates of uncertainty
- Resistant to overfitting

- Improve as more labeled data is acquired
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More Bayes...
(The Theory that Would Not Die)

the theory &
<t that would
“ e not die g
how bayes’ rule cracked
=<.._the enigma code,

hunted down russian
submarines & emerged
triumphant from two &~
centuries of controversy
sharon bertsch mcgrayne

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022



ing

Machine Learning Approaches for Predict
Phytoplankton Community Composition (PCC)

from Ocean Color
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Problem Statement

Context




Problem Statement

Context

But it was all we had for
several decades!




Proposed Solution

Machine learning + less ambiguous metrics of PCC

PCC metrics IngrEdientS

Top of atmosphere Associated measurement Known/unknown

Imaging flow reflectance uncertainties unknowns
cytotbot

Contextual
environmental +
observations

Flow Microscopic

cytometry enumeration & ID
Flocam

p«A) (dimensionless)

450 500 550 600 650
wavelength (nm)

Molecular information

Bayesian Models for Deriving Biogeochemical ML Bayesian framework /
Information from Satellite Ocean Color : * Explore data using ML approaches
Susanne E. Craig!? and Erdem M. Karakoyli' 3 LIKELIHOO D PRIOR . .
10cean Ecology Laboratory, NASA Goddard Space Flight Center; 2Universities Space Research Association; 3Science Applications International Corporation The pr‘obObIlITy Of "B being The pr'ObiIIITy ip . being In a BayeSIa n fra meWO rk
True, given "A" is True True. This is the knowledge. e
— l * Mitigates:
i, 0,79 01 _ - itH
e Circumvents the need for perfect l Overfitting
o e 01 : : - '
00 atmospheric correction Data;parsﬂg : :
[ 4 3 -
° &% —> Coastal, optically complex, inland Provi e..c, felellarsealaiicton
,;..3 ° 1 ’ uncertainty
POSTERIOR
The probability of "A" being MARGINAL;ZATION
True, given "B" is True The probability "B" being True.
Craig & Karakoylii, 2019, Earth ArXiv, https://doi.orq/10.31223/osf.io/shp6y
Figure: https://towardsdatascience.com/
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PACE will support studies of: Primary hyperspectral radiometer: Mission elements:
ocean biology, ecology, & * Ocean Color Instrument (OCl) (GSFC) Competed science teams (ESD)
biogeochemistry Competed SVC teams (ESD)
atmospheric aerosols 2 contributed multi-angle polarimeters: Science analysis & processing (GSFC)
clouds « HARP2 (UMBC) Spacecraft (GSFC)

land  SPEXone (SRON/Airbus) Mission operations (GSFC)

Legacies:
 SeaWiFS, MODIS, VIIRS
e POLDER, MISR

Key characteristics:
Jan. 2024 launch
Falcon 9 from KSC/Cape
Canaveral
676.5 km altitude
polar, ascending, Sun

synchronous orbit; 98
inclination

13:00 local Equatorial
crossing

3-yr design life; 10-yr
propellant

Slides courtesy of Jeremy Werdell, PACE Project Scientist NASA GSFC



ocean color &
the ocean color instrument

ocean color retrievals drive OCl's
design & performance requirements

* hyperspectral scanning radiometer
« (320) 340 — 890 nm, 5 nm resolution, 2.5 nm steps
 plus, 940, 1038, 1250, 1378, 1615, 2130, and 2250 nm
» 1-2 day global coverage

» ground pixel size of 1 km2 at nadir

» + 200 fore/aft tilt to avoid Sun glint

 twice monthly lunar calibration
» daily on-board solar calibration

Slides courtesy of Jeremy Werdell, PACE Project Scientist NASA GSFC



PACE Measurement Scales

10000
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100 SeaWiFS
Length scale
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MODIS, MERIS, VIIRS

PACE, OLCI
Coastal & Inland
HICO,H:on!IP!

Processes

0.01 0.1 1 10 100 10 104
01 1 10hr O 1 10 100years
Time scale

Mouw et al. (2015). Remote Sensing of Environment 160, 15-30, https://doi.orq/10.1016/j.rse.2015.02.001
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Geosynchronous Littoral Imaging and Monitoring Radiometer
(GLIMR)

e Funded under NASA’s Earth Venture Instrument (EVI) portfolio
e Pl: Joe Salisbury, UNH

e Deputy Pl: Antonio Mannino, NASA GSFC

e Anticipated launch date 2026/27

e Geostationary orbit

University of A~ Raytheon
tew Hampshize 7 Technologies
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GLIMR

Primary Science Scans

* 6x/day Gulf of Mexico (GoMex)

e 2x/day US East Coast

e 2x/day US West Coast

e 2x/day Amazon River Plume ROI

e 2x/day Caribbean Sea ROI

« 3x/day other HAB target sites

* Calibration Sites (MOBY/S. Pacific/PACE)

Slides courtesy of Ryan Vandermuelen, GLIMR Investigator, NASA GSFC

1 0.45

20

 0.067

0.01

Chlorophyll-a (mg m™)



A glimpse into GLIMR

Spatial Spectral

Temporal

_1)”

o 22 o
Reflectance (sr

AN

Telescope mounted on a 2-axis gimbal that actively scans
an imaging spectrometer across the Gulf of Mexico.

Slides courtesy of Ryan Vandermuelen, GLIMR Investigator, NASA GSFC

Geostationary Littoral Imaging and

Monitoring Radiometer

Hyperspectral

340-1040 nm
<10 nm UV-Vis
resolution

<5 nm UV-Vis sampling

High Spatial

300 m GSD nadir

~328 m Gulf of Mexico
<500 m over coastal

CONUS

High Temporal

~hourly scans of Gulf of

Mexico (6x/day)
2x/day other regions
3x/day HAB target sites

High SNR

> 420, UV

> 1000, 400-580 nm
> 750, 580-650 nm
> 580, 650-890 nm



10 yrs

1 month

1 week

Time Scale

1 day

GLIMR

Rossby Waves :

Mesoscale

1 Seasonality

toastal
pwelling

Phytoplankton blooms &
zooplankton graging

s, Fronts, Filaments

I
Surface ]’ides

Synoptic storms (precipitation), River
outflows, and Sediment resuspension

]00,6)7

Horizontal Spatial Scale

Slides courtesy of Ryan Vandermuelen, GLIMR Investigator, NASA GSFC

The temporal cadence of GLIMR will enable the
observation of physical processes that regulate
the spatial-temporal dynamics of biological and
biogeochemical processes and constituent
distributions.
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Suborbital Ocean Color Platforms

Legend

Remote sensing blind spot Drone techniques ISS instruments|[MODIS
o UAVs

e Moorings

e Ships of opportunity
e Gliders

e Wavegliders

e SailDrones...

eddies

Physical-biological
interactions

Submeso_:,
features ernal

tides
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Internal waves and
inertial motions

Surface gravity

Capillary e e

waves

Molecular
processes

Gray et al. (2022). Frontiers in Ecology and the Environment, https:// 0.1 iy Tom O1py Tm 705, 100, Thn 704,700 km703 - 704 B
doi.org/10.1002/fee.2472

Spatial scale

e These all address sub-pixel variability and fill satellite spatial/temporal gaps

e Autonomous measurements will become increasingly important for ocean
observations & model validation
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Q: How to promote data sharing and the creation of integrated archives with
consistent data quality and format requirements?

e All NASA-funded investigators are obliged to submit their data (ocean
color and oceanographic) to the SeaBASS repository (https://

seabass.gsfc.nasa.gov/)

e The community should strive to adhere to FAIR data principles:
- Findable, Accesible, Interoperable, Reusable (https://www.go-

fair.org/)

- However, this requires funded support to achieve!
e NASA is strongly encouraging a push to open science:

- Transform to Open Science (TOPS https://science.nasa.gov/open-

science/transform-to-open-science)

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022
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Q: How to promote data sharing and the creation of integrated archives with
consistent data quality and format requirements?

e The PACE mission has a dedicated Applications Team
- Erin Urquhart, Natasha Sadoff
- Early adopters program to prime future community for using PACE
data products
- Community of Practice



https://pace.oceansciences.org/applications.htm
mailto:erin.u.jephson@nasa.gov
mailto:natasha.sadoff@nasa.gov

Ocean Color Instrument (OCI)

Engineering Test Unit
ermal Vacuum Test Preparation

02/06/20 - 02/18/20




