Remote Sensing of Ocean Color in the Coastal Zone: Challenges and Solutions

Susanne E. Craig NASA Goddard Space Flight Center, Ocean Ecology Laboratory/UMBC

Ocean Color in the Coastal Ocean: The Problem

- Chlorophyll (Chl) and inherent optical properties (IOPs) are proxies of biogeochemical processes in the ocean
- Can be accurately estimated from satellite ocean color in many regions of the world ocean -> band ratio & semi-analytical algorithms

Alternative approaches required if we are to fully exploit satellite ocean color data collected over these systems

However, frequently not able to <u>quantitatively</u> utilize satellite ocean color in a variety of scenarios, e.g.: - model assumptions violated - difficulty in removing the atmospheric contribution to the signal detected by the satellite → typically over coastal & inland waters

Imagery: <u>https://oceancolor.gsfc.nasa.gov</u>

Ocean Color

satellite

*L*_t - top of atmosphere radiance

water-leaving signal contributes a max. of 10% of the total signal

what the satellite sees

air-water

interface

waves, whitecaps

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022

atmosphere

air molecules aerosols gases

> what we want: water-leaving radiance

ocean

dissolved & particulate material

Ocean Color

*L*_t - top of atmosphere radiance

water-leaving signal contributes a max. of 10% of the total signal

what the satellite sees

satellite

air-water interface waves, whitecaps

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022

ocean

dissolved & particulate material what we want: water-leaving radiance

Atmospheric Correction of Ocean Color

top of white caps atmos. Rayleigh & aerosol

What the satellite sees

Atmosphere 'subtracted' using measurements, models & assumptions

Atmospheric Correction of Ocean Color

Ocean colour dominated by chlorophyll - other optically active constituents covary

Atmospheric correction increasingly challenging

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022

Optically complex - other optically active water constituents do not covary with chlorophyll

Atmospheric Correction Produces Negative Reflectance

AC failure typically affects blue wavelengths most strongly

'Too much' atmosphere subtracted \rightarrow negative reflectance

Pixels near coastlines are frequently flagged for failing atmospheric correction

Article

Evaluation of MODIS-Aqua Atmospheric Correction and Chlorophyll Products of Western North American **Coastal Waters Based on 13 Years of Data**

Tyson Carswell ¹,* ^(D), Maycira Costa ¹,*, Erika Young ¹, Nicholas Komick ², Jim Gower ³ and **Ruston Sweeting**⁴

Carswell et al. (2017). Remote Sensing, 9, 1063, https://doi.org/ 10.3390/rs9101063

Example of MODIS-derived chlorophyll distribution

• Don't try to remove the atmosphere's contribution • Use EOF analysis to detect the underlying variance due to water signals

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022

c.f. Craig et al. (2012), Remote Sensing of Envitonment, 119, 72-83

Geographical Distribution of Data Points Used in Model Development

NASA NOMAD SeaWiFS-to-in situ matchup dataset https://seabass.gsfc.nasa.gov/

Results - EOF Analysis of Top of Atmosphere (TOA) Spectra

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022

Cross-validation statistics

<mark>λ(nm)</mark>	r² (N = 163)	RM
412	0.801	0.1
443	808.0	0.1
490	0.825	0.1
510	0.811	0.1
555	0.706	0.3
670	0.867	0.2

N = 163, training:test 80:20, 5000 trials

- Very similar statistics compared with model fitted to entire dataset
- Robust, likely not overtrained

Sensitivity Analysis - variable atmosphere & water constituents

- Synthetic dataset created using a coupled ocean-atmosphere radiative transfer model Variable IOPs (c.f IOCCG Report No.5), variable AOD (τ), & absorbing aerosols
- TOA-EOF models derived for IOPs & Chl
- Found to perform well & cross-validation suggested robust, generalizable models •

$$\tau = 0.1 \qquad \qquad \tau = 0.$$

Plankton, Aerosol, Cloud, ocean Ecosystem

 $\tau = 0.5$ $\tau = 0.8$

Approach evolved into Bayesian machine learning model

Erdem Karaköylü - Data Science Consulting

Bayesian Models for Deriving Biogeochemical Information from Satellite Ocean Color

Susanne E. Craig 1,2 and Erdem M. Karaköylü 1,3

¹Ocean Ecology Laboratory, NASA Goddard Space Flight Center; ²Universities Space Research Association; ³Science Applications International Corporation

Craig and Karaköylü (2019), Earth ArXiv, <u>https://eartharxiv.org/</u> repository/dashboard/557/10.31223/osf.io/shp6y

Bayesian Machine Learning Approaches

- models
- Bayesian machine learning approaches:
 - Intrinsically mitigate overfitting
 - scientist
 - estimation probability distributions come for free
 - Readily adaptable to the 'clustering' that often occurs in nature -
 - campaigns, autonomous assets

The ocean is chronically under sampled → sparse data → overfitted, non-generalizable

Principled modeling approach - allows the inclusion of prior knowledge: * Requires a close collaboration between the domain specialist and the data

* Embrace what the human practitioner knows about the system

- Can integrate measurement uncertainty to give more accurate overall uncertainty

- Model can be updated as more labeled data is collected - satellites, in situ

Bayesian Neural Network for IOP Prediction from TOA Spectra

- Same NOMAD SeaWiFS-to in situ dataset used
- Models derived for spectral phytoplankton absorption, $a_{ph}(\lambda)$
- Built for automatic relevance determination
- Model features:
 - + EOFs of TOA spectra, as in original models
 - Metrics of latitude & longitude
 - Day of year
 - Sea surface temperature
 - ✦ Bathymetry

Bayesian Models for Deriving Biogeochemical Information from Satellite Ocean Color

Susanne E. Craig^{1,2} and Erdem M. Karaköylü^{1,3}

¹Ocean Ecology Laboratory, NASA Goddard Space Flight Center; ²Universities Space Research Association; ³Science Applications International Corporation

Earth ArXiv (2019), https://eartharxiv.org/repository/dashboard/557/10.31223/osf.io/shp6y

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022

Inference diagram of the Bayesian NN

Results - Bayesian Neural Network for $a_{ph}(\lambda)$

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022

- Out-of-sample observed vs. prediction mean
- $R^2(\lambda) \ge 0.8$
- Mean absolute error(λ) = 0.08-0.15
- Accurate estimate at blue wavelengths * In conventional approaches, <u>atmospheric correction is the most</u> challenging in the blue

N.B. These are means of a predicted distribution

Comparison with a Conventional Semi-Analytical Model

Semi-analytical model

- BNN trained with a test dataset •
- Same test data used in GIOP model
- **BNN** performs significantly better - especially at blue wavelengths

GIOP model - default configuration (Werdell et al. (2013). Applied Optics, 52, 2019)

True

-4.0

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022

Take Home Messages

- - Standard atmospheric correction was not required
 - <u>Particularly relevant for coastal, inland and optically complex</u> <u>waters</u>
- Bayesian neural networks:
 - Provide robust estimates of uncertainty
 - Resistant to overfitting
 - Improve as more labeled data is acquired

• Bayesian neural network models were able to accurately estimate optical biomass proxy (and Chl - not shown) from top of atmosphere spectra

More Bayes... (The Theory that Would Not Die)

the theory that would not die 🖉 how bayes' rule cracked the enigma code, hunted down russian submarines & emerged triumphant from two centuries of controversy sharon bertsch mcgrayne

¹Ocean Ecology Laboratory, Goddard Space Flight Center/UMBC, ²Oregon State University, ³University of Rhode Island GSO, ⁴Machine Learning Consultant, ⁵Global Modeling & Assimilation Office, Goddard Space Flight Center

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022

Machine Learning Approaches for Predicting **Phytoplankton Community Composition (PCC)** from Ocean Color

PI: Susanne E. Craig¹ Team: Ian Carroll¹, Jason Graff², Susanne Menden-Deuer³, Erdem Karaköylü⁴, Cecile Rousseaux⁵

Context

Phytoplankton community composition (PCC) models have historically relied on deriving empirical relationships between HPLC pigments & ocean color

Pigments are an imperfect proxy of PCC

Co-occur across very different taxonomic groupings/sizes

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022

Problem Statement

Environmental + physiological factors → Relative abundances are highly dynamic

➡ Climate forcing ➡ restructuring of water column \rightarrow perturb physiology \rightarrow pigments → .: relationships no longer valid

Context

Phytoplankton community composition (PCC) models have historically relied on deriving empirical relationships between HPLC pigments & ocean color

Pigments are an imperfect proxy of PCC

Co-occur across very different taxonomic groupings/sizes

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022

Problem Statement

But it was all we had for several decades!

Environmental + physiological factors → Relative abundances are highly dynamic

➡ Climate forcing ➡ restructuring of water column \rightarrow perturb physiology \rightarrow pigments → .: relationships no longer valid

Proposed Solution

Machine learning + less ambiguous metrics of PCC

Bayesian Models for Deriving Biogeochemical Information from Satellite Ocean Color

Susanne E. Craig^{1,2} and Erdem M. Karaköylü^{1,}

Ocean Ecology Laboratory, NASA Goddard Space Flight Center; ²Universities Space Research Association; ³Science Applications International Corporation

Craig & Karaköylü, 2019, Earth ArXiv, <u>https://doi.org/10.31223/osf.io/shp6y</u>

Where we are now...

Big Question???? What metric of PCC should be inferred?

Initial ML approach: Exploratory data analysis of synthetic dataset

- ightarrow
- 6 phytoplankton groups

*Greg & Rousseaux, 2017, Front. Mar. Sci., <u>http://dx.doi.org/10.3389/fmars.2017.00060</u>

Can be guided by what labelled data will realistically be available for model training

US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022

MERRA-NOBM (NASA Ocean Biogeochemical Model)* Coupled ocean-atmosphere radiative transfer model

Approach:

- Detect optical signatures 🗸
- Codify ecological principles in Bayesian model(s)
- Conduct sensitivity analysis
 - Reduce predictor variables to those that are available for training

Plankton, Aerosol, Cloud, ocean Ecosystem

PACE will support studies of:

- ocean biology, ecology, & biogeochemistry
- atmospheric aerosols
- clouds
- land

Primary hyperspectral radiometer: Ocean Color Instrument (OCI) (GSFC)

2 contributed multi-angle polarimeters:

HARP2 (UMBC)

PACE

SPEXone (SRON/Airbus)

Slides courtesy of Jeremy Werdell, PACE Project Scientist NASA GSFC

Mission elements:

- Competed science teams (ESD)
- Competed SVC teams (ESD)
- Science analysis & processing (GSFC)
- Spacecraft (GSFC)
- Mission operations (GSFC)

Legacies:

- SeaWiFS, MODIS, VIIRS
- POLDER, MISR

Key characteristics:

- Jan. 2024 launch
- Falcon 9 from KSC/Cape Canaveral
- 676.5 km altitude
- polar, ascending, Sun synchronous orbit; 98° inclination
- 13:00 local Equatorial crossing
- 3-yr design life; 10-yr propellant

- hyperspectral scanning radiometer
- (320) 340 890 nm, 5 nm resolution, 2.5 nm steps
- plus, 940, 1038, 1250, 1378, 1615, 2130, and 2250 nm
- 1-2 day global coverage
- ground pixel size of 1 km² at nadir
- ± 20° fore/aft tilt to avoid Sun glint
- twice monthly lunar calibration
- daily on-board solar calibration

Slides courtesy of Jeremy Werdell, PACE Project Scientist NASA GSFC

ocean color & the ocean color instrument

ocean color retrievals drive OCI's design & performance requirements

PACE Measurement Scales

Mouw et al. (2015). Remote Sensing of Environment 160, 15-30, <u>https://doi.org/10.1016/j.rse.2015.02.001</u>

Geosynchronous Littoral Imaging and Monitoring Radiometer (GLIMR)

- Funded under NASA's Earth Venture Instrument (EVI) portfolio
- PI: Joe Salisbury, UNH
- Deputy PI: Antonio Mannino, NASA GSFC
- Anticipated launch date 2026/27
- Geostationary orbit

Primary Science Scans

- 6x/day Gulf of Mexico (GoMex)
- 2x/day US East Coast
- 2x/day US West Coast
- 2x/day Amazon River Plume ROI \bullet
- 2x/day Caribbean Sea ROI \bullet
- 3x/day other HAB target sites \bullet
- Calibration Sites (MOBY/S. Pacific/PACE)

Slides courtesy of Ryan Vandermuelen, GLIMR Investigator, NASA GSFC

GLIMR

A glimpse into GLIMR

Telescope mounted on a 2-axis gimbal that actively scans an imaging spectrometer across the Gulf of Mexico.

Slides courtesy of Ryan Vandermuelen, GLIMR Investigator, NASA GSFC

Geostationary Littoral Imaging and Monitoring Radiometer

Hyperspectral

- 340-1040 nm \bullet
- <10 nm UV-Vis \bullet resolution
- <5 nm UV-Vis sampling

High Spatial

- 300 m GSD nadir •
- ~328 m Gulf of Mexico
- <500 m over coastal CONUS

High Temporal

- ~hourly scans of Gulf of Mexico (6x/day)
- 2x/day other regions
- 3x/day HAB target sites

High SNR

- > 420, UV
- > 1000, 400-580 nm
- > 750, 580-650 nm
- > 580, 650-890 nm

Slides courtesy of Ryan Vandermuelen, GLIMR Investigator, NASA GSFC

Scale Time

The temporal cadence of GLIMR will enable the observation of physical processes that regulate the spatial-temporal dynamics of biological and biogeochemical processes and constituent distributions.

10,000 km

Suborbital Ocean Color Platforms

- UAVs
- Moorings
- Ships of opportunity
- Gliders
- Wavegliders
- SailDrones...

Gray et al. (2022). Frontiers in Ecology and the Environment, <u>https://</u> <u>doi.org/10.1002/fee.2472</u>

<u>These all address sub-pixel variability and fill satellite spatial/temporal gaps</u> <u>Autonomous measurements will become increasingly important for ocean</u> <u>observations & model validation</u>

Q: How to promote data sharing and the creation of integrated archives with consistent data quality and format requirements?

- All NASA-funded investigators are obliged to submit their data (ocean color and oceanographic) to the SeaBASS repository (<u>https://</u> seabass.gsfc.nasa.gov/)
- The community should strive to adhere to FAIR data principles:
 - <u>Findable</u>, <u>Accesible</u>, <u>Interoperable</u>, <u>Reusable</u> (<u>https://www.go-</u> fair.org/)
 - However, this requires funded support to achieve!
- NASA is strongly encouraging a push to open science:
 - <u>science/transform-to-open-science</u>)

- Transform to Open Science (TOPS <u>https://science.nasa.gov/open-</u>

Q: How to promote data sharing and the creation of integrated archives with consistent data quality and format requirements?

- The PACE mission has a dedicated Applications Team
 - Erin Urguhart, Natasha Sadoff
 - Early adopters program to prime future community for using PACE _ data products
 - Community of Practice
 - https://pace.oceansciences.org/applications.htm

Erin Urquhart, Project **Applications Coordinator** erin.u.jephson@nasa.gov

Natasha Sadoff: Project **Applications** Deputy Coordinator <u>natasha.sadoff@nasa.gov</u>

Ocean Color Instrument (OCI)

Engineering Test Unit Thermal Vacuum Test Preparation

02/06/20 - 02/18/20

Movie courtesy of Jeremy Werdell, PACE Project Scientist NASA GSFC US CLIVAR Ecological Forecasting Workshop 12-14 Apr 2022

Plankton, Aerosol, Cloud, ocean Ecosystem

