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• Chlorophyll	(Chl)	and	inherent	op2cal	proper2es	(IOPs)	are	proxies	of	
biogeochemical	processes	in	the	ocean

Ocean	Color	in	the	Coastal	Ocean:	The	Problem

Imagery:	hOps://oceancolor.gsfc.nasa.gov	

• Can	be	accurately	es2mated	from	satellite	ocean	color	in	many	regions	
of	the	world	ocean	➙	band	ra2o	&	semi-analy2cal	algorithms

• However,	frequently	not	able	to	quan2ta2vely	u2lize	satellite	
ocean	color	in	a	variety	of	scenarios,	e.g.:	
- model	assump2ons	violated	
- difficulty	in	removing	the	atmospheric	contribu2on	to	the	
signal	detected	by	the	satellite	
➙	typically	over	coastal	&	inland	waters

• Alterna2ve	approaches	required	if	we	are	to	fully	exploit	satellite	ocean	
color	data	collected	over	these	systems

https://oceancolor.gsfc.nasa.gov
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Ocean	Sciences	Mee+ng	16-21	February	2020	-	San	Diego,	CA

Ocean	Colour	Challenges	in	Op1cally	Complex	Waters

• Non-covarying	water	cons2tuents	confound	band	ra2o	algorithms	

• Empirically	derived	rela2onships	in	semi-analy2cal	algorithms	not	valid	and/or	signal	too	
small	to	resolve	

• Satellites	measure	the	radiance	of	the	ocean	+	atmosphere:	
- Atmosphere	must	be	subtracted	
- Atmospheric	correc1on	very	difficult	in	coastal/op1cally	complex	waters	**	
- Data	is	oAen	unusable	due	to	inability	to	reliably		‘remove’	the	atmosphere

Ocean	colour	dominated	by	
chlorophyll	-	other	op2cally	
ac2ve	cons2tuents	covary

Op2cally	complex	-	other	op2cally	
ac2ve	water	cons2tuents	do	not	

covary	with	chlorophyll

Case	1 Case	2

con1nuum

Open	ocean	basins shelf	seas
coastal	waters

estuaries wetlands
inland	waters

Atmospheric	correc9on	increasingly	challenging

Atmospheric	Correc9on	of	Ocean	Color
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Atmospheric	Correc9on	Produces	Nega9ve	Reflectance

‘Too	much’	atmosphere	subtracted	➙	nega9ve	reflectance

SeaWiFS	NASA	NOMAD	in	situ-to-satellite	dataset

AC	failure	typically	
affects	blue	
wavelengths	most	
strongly
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of chla within the Salish Sea, with values higher than 40.0 mg m�3, not commonly observed in this
region [20,38].

 

Figure 9. Example of MODIS-derived chlorophyll distribution for February, April and September.

4. Discussion

This research comprised the most comprehensive analysis of MODIS-Aqua imagery subject to
evaluation of atmospheric correction methods and derived chla products using in situ data from the
Salish Sea. We provided an evaluation of three atmospheric correction methods (NIR, SWIR, and
MUMM + SWIR) in relation to in situ AERONET and above-water reflectance data, followed by an
assessment of MODIS chla retrievals in relation to in situ chla measurements. Our findings show
that, for the region of study, the combined statistical results of the tested atmospheric correction
methods and chla retrievals support MUMM + SWIR as the most appropriate method to determine
accurate MODIS Rrs(l) for retrieval of chla using the OC3M algorithm. The following sections provide
a discussion of our main results.

4.1. Atmospheric Correction

To understand the ability of the three atmospheric correction methods to accurately retrieve
Rrs(l) required for chla determination, products generated from each method were compared to
a stationary AERONET site and in situ above-water Rrs samples collected throughout the Salish Sea.
Overall, the comparison with the AERONET in situ data showed that derived aerosol products were
the least accurate for the SWIR method, and relatively similar for NIR and MUMM + SWIR methods.
Å(440, 870 nm) biases varied from �13.8% to +11.6%, and uncertainty was approximately 25%, with
slightly lower performance for the MUMM + SWIR method; ta (443), however, showed higher ranges
of both uncertainty and biases, 71.3–93.4% and 70.4–168.2%, respectively, with higher values for 675 nm
and 875 nm, but still overall better performance was obtained for the SWIR + MUMM method, with

Pixels	near	coastlines	are	frequently	flagged	for	failing	
atmospheric	correc9on

remote sensing  
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Abstract: There is an increasing need for satellite-derived accurate chlorophyll-a concentration
(chla) products to improve fisheries management in coastal regions. However, the methods used
to derive these products have to be evaluated, so the associated uncertainties are known. The
performance of three atmospheric correction methods, the near infrared (NIR), the shortwave infrared
(SWIR), and the Management Unit of the North Seas Mathematical Models with an additional
modification (MUMM + SWIR), and derived chla products based on the Moderate Resolution Imaging
Spectroradiometer AQUA (MODIS) images acquired from 2002 to 2014 over the west coast of Canada
and the United States were evaluated. The atmospherically corrected products and above-water
reflectance were compared with in situ AERONET (N ~ 650) and above-water reflectance (N ~ 34) data,
and the Ocean Color 3 MODIS (OC3M)-derived chla were compared with in situ chla measurements
(N ~ 82). The statistical analysis indicated that the MUMM + SWIR method was the most appropriate
for this region, with relatively good retrievals of the atmospheric products, improved retrieval of
remote sensing reflectance with bias lower than 20% for the OC3M bands, and improved retrievals
of chla (r = 0.83, slope = 0.89, logRMSE = 0.33 mg m�3 for ±1 h). The poorest chla retrievals were
achieved with the SWIR and NIR methods. These results represent the most comprehensive satellite
data analysis of MODIS retrievals for this region and provide a framework for the MUMM + SWIR
method that can be further tested in other coastal regions of the world.

Keywords: ocean colour; MODIS; coastal waters; chlorophyll-a; atmospheric correction; west coast
of North America

1. Introduction

There is a need for improved monitoring of dynamic coastal processes including productivity,
critical habitats, and fisheries given the effects of increasing human pressures and a changing climate [1].
Traditional methods for monitoring coastal water properties typically rely on in situ sampling from
a ship or buoy based systems, which are often prohibitively costly and spatio-temporally limited.
Inability to effectively monitor and characterize dynamic zones poses a significant barrier, for instance,
to fisheries management. As an example, in the west coast of Canada, improved understanding of
the impacts of bottom-up forcing on fish populations requires long-term spatio-temporal productivity
data [1]. Long-term data derived from ocean colour satellites, for instance, MODIS-Aqua, offer

Remote Sens. 2017, 9, 1063; doi:10.3390/rs9101063 www.mdpi.com/journal/remotesensing

Example	of	MODIS-derived	chlorophyll	distribu2on	

Carswell	et	al.	(2017).		Remote	Sensing,	9,	1063,	hOps://doi.org/
10.3390/rs9101063
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• Don’t	try	to	remove	the	atmosphere’s	contribu2on	
• Use	EOF	analysis	to	detect	the	underlying	variance	due	to	water	signals

An	Alterna9ve	Approach

c.f.	Craig	et	al.	(2012),	Remote	Sensing	of	Envitonment,	119,	72-83
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Geographical	Distribu9on	of	Data	Points	Used	in	Model	Development

NASA	NOMAD	SeaWiFS-to-in	situ	matchup	dataset	
hOps://seabass.gsfc.nasa.gov/

https://seabass.gsfc.nasa.gov/
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λ(nm) r2 (N = 163) RMSE
412 0.801 0.178
443 0.808 0.169
490 0.825 0.164
510 0.811 0.187
555 0.706 0.301
670 0.867 0.204

N	=	163,	training:test	80:20,	5000	trials

Ocean	Op(cs	XXIV	7-12	October	2018	-	Dubrovnik,	Croa(a
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Cross-valida9on	sta9s9cs

• Very	similar	sta2s2cs	
compared	with	model	fi`ed	to	
en2re	dataset	

• Robust,	likely	not	overtrained

Results	-	EOF	Analysis	of	Top	of	Atmosphere	(TOA)	Spectra

aph:	op2cal	metric	of	
phytoplankton	biomass
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• Synthe2c	dataset	created	using	a	coupled	ocean-atmosphere	radia2ve	transfer	model	
• Variable	IOPs	(c.f	IOCCG	Report	No.5),	variable	AOD	(τ),	&	absorbing	aerosols	
• TOA-EOF	models	derived	for	IOPs	&	Chl	
• Found	to	perform	well	&	cross-valida2on	suggested	robust,	generalizable	models

m
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	τ	=	0.8τ	=	0.5τ	=	0.3τ	=	0.1

‘true’	aph	(m-1)
400	nm
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Sensi9vity	Analysis	-	variable	atmosphere	
&	water	cons9tuents
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Approach	evolved	into	Bayesian	machine	learning	model

Erdem	Karaköylü	-	Data	Science	Consul2ng

DRAFT

Bayesian Models for Deriving Biogeochemical

Information from Satellite Ocean Color

Susanne E. Craig1,2 and Erdem M. Karaköylü1,3
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biological oceanography | phytoplankton | machine learning | satellite remote sensing | atmospheric correction

The era of satellite ocean color began in 1978 with the1

launch of NASA’s Coastal Ocean Color Scanner (CZCS) on2

board the Nimbus-7 spacecraft. Through measurement of the3

quantity and quality of the light reflected from the ocean,4

CZCS revolutionized our understanding of the intimate re-5

lationships between ocean physics and phytoplankton distri-6

bution in the world ocean (1). Generations of spaceborne7

sensors have subsequently followed, and satellite ocean color8

measurements now provide spatial and temporal distributions9

of phytoplankton (2) and other aquatic biogeochemical con-10

stituents (3), estimates of ocean primary productivity (4, 5),11

and have become a vital input to global models of Earth12

system processes and their response to a changing climate13

(6, 7).14

Ocean color is derived from the signal collected at the top15

of the atmosphere (TOA) by a satellite spectroradiometer.16

The majority of this signal is due to scattering from atmo-17

spheric aerosols and reflection by wind-generated whitecaps,18

with only ~10% maximum of the spectrum due to radiance19

either reflected from the ocean surface or scattered back out20

through the air-water interface. The atmospheric contribution21

must, therefore, be ‘subtracted’ from the TOA signal in order22

to derive the oceanic contribution. This is achieved opera-23

tionally through the process of atmospheric correction (AC),24

which removes the influence of sun glint, whitecaps formed25

by wind, and the contribution by atmospheric aerosols. This26

latter step takes advantage of the fact that the water body27

can be considered to be totally absorbing (i.e. black) in the28

near infrared (NIR). Any TOA signal detected at wavelengths29

in the NIR is then attributed to atmospheric contributions30

and a suitable aerosol radiance model is chosen to extrapolate31

to shorter wavelengths. This derived atmospheric radiance32

is subtracted from the total TOA spectrum, and the signal33

that remains is the water-leaving radiance. Remote sensing34

reflectance (Rrs, sr
≠1) i.e. the light exiting the water normal-35

ized to a hypothetical condition of an overhead Sun and no36

atmosphere (8, 9), can then be calculated. Following calcu-37

lation of Rrs, various approaches are used to estimate water38

constituent concentrations. These fall broadly into two classes39

of algorithms: i) empirical band-ratio algorithms, which are40

derived from the statistical relationship between the ratio of41

two or more wavebands (blue and green) of Rrs and in situ42

measurements of chlorophyll a concentration, Chl a (mg m
≠3),43

a proxy for phytoplankton biomass (2), and ii) semi-analytical44

algorithms that are based on a combination of radiative trans- 45

fer theory and empirically derived parameters, and that permit 46

the retrieval of inherent optical properties (IOPs) such as spec- 47

tral particulate backscattering, bbp (m≠1), and phytoplankton 48

absorption, aph (m≠1), coe�cients that can be related to the 49

water constituents of interest (3). 50

In a very general sense, AC approaches perform well over 51

the open ocean where the water is totally absorbing in the 52

NIR and the aerosol assemblage can be well modeled. How- 53

ever, AC performance becomes severely limited in coastal and 54

inland waters where bottom reflectance can contaminate water- 55

leaving signals, suspended sediments may produce a non-zero 56

reflectance in the NIR, and/or absorbing aerosols, e.g. those 57

generated by terrestrial anthropogenic sources (10), are dif- 58

ficult to model accurately. The performance of the in-water 59

algorithms is also degraded in these regions for a variety of 60

reasons. The band ratio algorithms were developed for use in 61

case 1 waters, i.e. those in which ocean color is dominated by 62

Chl a and all other optically active water constituents covary 63

(11). In case 2 waters (11), where other optically active water 64

constituents vary independently of Chl a (e.g. coastal waters), 65

band ratio algorithms often perform poorly as colored dissolved 66

organic material (CDOM) and suspended particulate material 67

compete with phytoplankton for the absorption and scattering 68

of blue photons, thereby confounding the algorithm’s assump- 69

tion of co-variability. Semi-analytical models may perform 70

satisfactorily in case 2 waters, but model parameters such as 71

the spectral slopes of CDOM+detrital absorption and partic- 72

ulate backscattering may need to be regionally tuned as their 73

local values can vary widely (12–14). Additionally, the signal 74

of interest may simply be swamped by competing processes – a 75

common occurrence in case 2 waters where CDOM absorption 76

coe�cients can be an order of magnitude or greater than that 77

of phytoplankton (15, 16). Finally, if AC is inaccurate, the 78

spectral shape of the retrieved Rrs spectrum may be distorted, 79

meaning that the starting point for any of these ocean color 80

models will be fundamentally flawed. As a result of these 81

challenges, satellite measurements made over such water bod- 82

ies are often unusable for quantitative studies. The loss of 83

information from these systems is particularly egregious as 84

they are vulnerable to climate and anthropogenic forcing (17), 85

play host to highly productive fisheries (18), or are regions 86

of intense atmospheric CO2 uptake (19) or sinking of organic 87

matter for climate-relevant time scales (20, 21). 88

1

Craig	and	Karaköylü	(2019),	Earth	ArXiv,	hOps://eartharxiv.org/
repository/dashboard/557/10.31223/osf.io/shp6y

https://eartharxiv.org/repository/dashboard/557/10.31223/osf.io/shp6y
https://eartharxiv.org/repository/dashboard/557/10.31223/osf.io/shp6y
https://eartharxiv.org/repository/dashboard/557/10.31223/osf.io/shp6y
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• The	ocean	is	chronically	under	sampled	➙	sparse	data	➙	overfi`ed,	non-generalizable	
models	

• Bayesian	machine	learning	approaches:	
- Intrinsically	mi2gate	overfikng	
- Principled	modeling	approach	-	allows	the	inclusion	of	prior	knowledge:	

✴ Requires	a	close	collabora8on	between	the	domain	specialist	and	the	data	
scien8st	

✴ Embrace	what	the	human	prac88oner	knows	about	the	system	
- Can	integrate	measurement	uncertainty	to	give	more	accurate	overall	uncertainty	
es2ma2on	-	probability	distribu2ons	come	for	free	

- Readily	adaptable	to	the	‘clustering’	that	olen	occurs	in	nature	
- Model	can	be	updated	as	more	labeled	data	is	collected	-	satellites,	in	situ	
campaigns,	autonomous	assets	

Bayesian	Machine	Learning	Approaches
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• Same	NOMAD	SeaWiFS-to	in	situ	dataset	used	
• Models	derived	for	spectral	phytoplankton	
absorp2on,	aph(λ)	

• Built	for	automa2c	relevance	determina2on		
• Model	features:	

✦ EOFs	of	TOA	spectra,	as	in	original	models	
✦ Metrics	of	la2tude	&	longitude	
✦ Day	of	year	
✦ Sea	surface	temperature	
✦ Bathymetry

Bayesian	Neural	Network	for	IOP	Predic9on	from	TOA	Spectra
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Fig. 8. Inference diagram of Bayesian models used. Horizontal lines separate three
conceptual groups; top æ priors, middle æ likelihood, bottom æ outcome distribution.
Top: Regression with horseshoe priors (Models 1 & 2). Bottom: Bayesian neural
network (Model 3). Models shown here are hierarchical, built for automatic feature
relevance determination.

2000 preliminary samples that were subsequently discarded. A372

similar fitting procedure was followed for the Bayesian neural373

network, with the di�erence that 2000 samples were collected374

after a 15000-iteration tuning step. In all cases, the sampling375

was performed four times concurrently, but independently, to376

ensure convergence. The Gelman-Rubin statistic (45) was377

used to verify that convergence was equivalent between in-378

dependent sampling runs. Relatively naive priors were used,379

codifying the rather loose constraint that reasonable values of380

the target variable would remain highly probable. An addi-381

tional constraint was applied to the Bayesian neural network382

to address the problem of weight space symmetry (46), which383

a�ects the weights applied to the input nodes, represented384

as edges connecting input nodes x1...n to hidden layer nodes385

h1...m as shown in the bottom panel of Fig. 8. The problem386

arises from the fact that, without an additional constraint,387

there is nothing to di�erentiate hidden layer nodes from one388

another. In practice this results in the sampler encountering389

di�culty in converging on the same mode for the a�ected390

weights. The constraint applied consists of enforcing a numer-391

ical order within the weights applied to each input node. This392

guarantees that no overlap can occur, thus eliminating the393

exchangeability problem. 394

Reproducibility. The code describing the preparation and 395

transformation of data, as well as the code for the devel- 396

opment, fitting, and evaluation of the models are available 397

through github https://github.com/madHatter106/Bayesian- 398

ML-4-IOP-from-TOA. The raw data is available through our 399

project page on the Open Science Foundation website OSF 400

link. 401
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The era of satellite ocean color began in 1978 with the1

launch of NASA’s Coastal Ocean Color Scanner (CZCS) on2

board the Nimbus-7 spacecraft. Through measurement of the3

quantity and quality of the light reflected from the ocean,4

CZCS revolutionized our understanding of the intimate re-5

lationships between ocean physics and phytoplankton distri-6

bution in the world ocean (1). Generations of spaceborne7

sensors have subsequently followed, and satellite ocean color8

measurements now provide spatial and temporal distributions9

of phytoplankton (2) and other aquatic biogeochemical con-10

stituents (3), estimates of ocean primary productivity (4, 5),11

and have become a vital input to global models of Earth12

system processes and their response to a changing climate13

(6, 7).14

Ocean color is derived from the signal collected at the top15

of the atmosphere (TOA) by a satellite spectroradiometer.16

The majority of this signal is due to scattering from atmo-17

spheric aerosols and reflection by wind-generated whitecaps,18

with only ~10% maximum of the spectrum due to radiance19

either reflected from the ocean surface or scattered back out20

through the air-water interface. The atmospheric contribution21

must, therefore, be ‘subtracted’ from the TOA signal in order22

to derive the oceanic contribution. This is achieved opera-23

tionally through the process of atmospheric correction (AC),24

which removes the influence of sun glint, whitecaps formed25

by wind, and the contribution by atmospheric aerosols. This26

latter step takes advantage of the fact that the water body27

can be considered to be totally absorbing (i.e. black) in the28

near infrared (NIR). Any TOA signal detected at wavelengths29

in the NIR is then attributed to atmospheric contributions30

and a suitable aerosol radiance model is chosen to extrapolate31

to shorter wavelengths. This derived atmospheric radiance32

is subtracted from the total TOA spectrum, and the signal33

that remains is the water-leaving radiance. Remote sensing34

reflectance (Rrs, sr
≠1) i.e. the light exiting the water normal-35

ized to a hypothetical condition of an overhead Sun and no36

atmosphere (8, 9), can then be calculated. Following calcu-37

lation of Rrs, various approaches are used to estimate water38

constituent concentrations. These fall broadly into two classes39

of algorithms: i) empirical band-ratio algorithms, which are40

derived from the statistical relationship between the ratio of41

two or more wavebands (blue and green) of Rrs and in situ42

measurements of chlorophyll a concentration, Chl a (mg m
≠3),43

a proxy for phytoplankton biomass (2), and ii) semi-analytical44

algorithms that are based on a combination of radiative trans- 45

fer theory and empirically derived parameters, and that permit 46

the retrieval of inherent optical properties (IOPs) such as spec- 47

tral particulate backscattering, bbp (m≠1), and phytoplankton 48

absorption, aph (m≠1), coe�cients that can be related to the 49

water constituents of interest (3). 50

In a very general sense, AC approaches perform well over 51

the open ocean where the water is totally absorbing in the 52

NIR and the aerosol assemblage can be well modeled. How- 53

ever, AC performance becomes severely limited in coastal and 54

inland waters where bottom reflectance can contaminate water- 55

leaving signals, suspended sediments may produce a non-zero 56

reflectance in the NIR, and/or absorbing aerosols, e.g. those 57

generated by terrestrial anthropogenic sources (10), are dif- 58

ficult to model accurately. The performance of the in-water 59

algorithms is also degraded in these regions for a variety of 60

reasons. The band ratio algorithms were developed for use in 61

case 1 waters, i.e. those in which ocean color is dominated by 62

Chl a and all other optically active water constituents covary 63

(11). In case 2 waters (11), where other optically active water 64

constituents vary independently of Chl a (e.g. coastal waters), 65

band ratio algorithms often perform poorly as colored dissolved 66

organic material (CDOM) and suspended particulate material 67

compete with phytoplankton for the absorption and scattering 68

of blue photons, thereby confounding the algorithm’s assump- 69

tion of co-variability. Semi-analytical models may perform 70

satisfactorily in case 2 waters, but model parameters such as 71

the spectral slopes of CDOM+detrital absorption and partic- 72

ulate backscattering may need to be regionally tuned as their 73

local values can vary widely (12–14). Additionally, the signal 74

of interest may simply be swamped by competing processes – a 75

common occurrence in case 2 waters where CDOM absorption 76

coe�cients can be an order of magnitude or greater than that 77

of phytoplankton (15, 16). Finally, if AC is inaccurate, the 78

spectral shape of the retrieved Rrs spectrum may be distorted, 79

meaning that the starting point for any of these ocean color 80

models will be fundamentally flawed. As a result of these 81

challenges, satellite measurements made over such water bod- 82

ies are often unusable for quantitative studies. The loss of 83

information from these systems is particularly egregious as 84

they are vulnerable to climate and anthropogenic forcing (17), 85

play host to highly productive fisheries (18), or are regions 86

of intense atmospheric CO2 uptake (19) or sinking of organic 87

matter for climate-relevant time scales (20, 21). 88
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Results	-	Bayesian	Neural	Network	for	aph(λ)
• Out-of-sample	observed	vs.	predic2on	mean	
• R2(λ)	≥	0.8	
• Mean	absolute	error(λ)	=	0.08-0.15	
• Accurate	es2mate	at	blue	wavelengths	

✴ In	conven2onal	approaches,	
atmospheric	correc2on	is	the	most	
challenging	in	the	blue

N.B.	These	are	means	of	a	predicted	distribu8on
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Comparison	with	a	Conven9onal	Semi-Analy9cal	Model

GIOP	model	-	default	configura5on	
(Werdell	et	al.	(2013).	Applied	Op5cs,	52,	2019)

• BNN	trained	with	a	test	dataset	
• Same	test	data	used	in	GIOP	
model	

• BNN	performs	significantly	
be`er	-	especially	at	blue	
wavelengths Bayesian	

neural	net

Semi-analy2cal	
model
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Take	Home	Messages

• Bayesian	neural	network	models	were	able	to	accurately	es2mate	op2cal	
biomass	proxy	(and	Chl	-	not	shown)	from	top	of	atmosphere	spectra	

- Standard	atmospheric	correc8on	was	not	required	

- Par8cularly	relevant	for	coastal,	inland	and	op8cally	complex	
waters	

• Bayesian	neural	networks:	

- Provide	robust	es2mates	of	uncertainty	

- Resistant	to	overfikng	

- Improve	as	more	labeled	data	is	acquired
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More	Bayes…	
(The	Theory	that	Would	Not	Die)Book Review

The Theory That
Would Not Die

Reviewed by Andrew I. Dale

The Theory That Would Not Die: How Bayes’
Rule Cracked the Enigma Code, Hunted Down
Russian Submarines, and Emerged Triumphant
from Two Centuries of Controversy
Sharon Bertsch McGrayne
Yale University Press, April 2011
US$27.50, 336 pages
ISBN-13: 978-03001-696-90

In the early 1730sThomas Bayes (1701?–1761)was
appointed minister at the Presbyterian Meeting
House on Mount Sion, Tunbridge Wells, a town that
had developed around the restorative chalybeate
spring discovered there by Dudley, Lord North, in
1606. Apparently not one who was a particularly
popular preacher, Bayes would be recalled today,
if at all, merely as one of the minor clergy of
eighteenth-century England, who also dabbled in
mathematics. How is it, then, that Roger Farthing,
author of an excellent history of Mount Sion, could
describe Bayes as “to my mind, the greatest man
to have lived in Tunbridge Wells” ([5, p. 167])? The
answer is fairly simple: Bayesian statistics.

In 1763 Richard Price forwarded to the Royal
Society of London an essay by Bayes [2] in which
the following problem was addressed:

Given the number of times in which
an unknown event has happened
and failed: Required the chance
that the probability of its happen-
ing in a single trial lies between any
two degrees of probability that can
be named.

Andrew I. Dale is emeritus professor of statistics at the
University of KwaZulu-Natal in Durban, South Africa. His
email address is dale@ukzn.ac.za.

DOI: http://dx.doi.org/10.1090/noti839

The solution, given more geometrico as Proposi-
tion 10 in [2], can be written today in a somewhat
compressed form as

posterior probability ∝ likelihood × prior probability.

Price himself added an appendix in which he used
the proposition in a prospective sense to find the
probability of the sun’s rising tomorrow given
that it has arisen daily a million times. Later use
was made by Laplace, to whom one perhaps really
owes modern Bayesian methods.

The degree to which one uses, or even supports,
Bayes’s Theorem (in some form or other) depends
to a large extent on one’s views on the nature
of probability. Setting this point aside, one finds
that the Theorem is generally used to update
(to justify the updating of?) information in the
light of new evidence as the latter is received,
resulting in a strengthening of one’s belief. Bayes’s
Theorem provides a codification of “learning from
experience”, and The Theory That Would Not Die

is concerned with the investigation and exposition
of situations in which such learning has been both
required and achieved.

A globally acceptable definition of Bayesianism,
or the Bayesian method , seems hardly possible, for
there are perhaps almost as many definitions as
there are practitioners of the art. A useful and
generally acceptable description is given as fol-
lows by Anthony O’Hagan: “The Bayesian method
briefly comprises the following principal steps.
Likelihood …Prior …Posterior …Inference” ([8, p.
10]). It is also considered essential that the prior
probability distributions be explicitly given (if
these distributions are estimated from the data,
the method, developed in the 1950s, is known as
Empirical Bayesianism).

May 2012 Notices of the AMS 657
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Problem	Statement

Phytoplankton	community	composi2on	(PCC)	models	
have	historically	relied	on	deriving	empirical	
rela2onships	between	HPLC	pigments	&	ocean	color

Pigments	are	an	imperfect	proxy	of	PCC

Co-occur	across	very	different	
taxonomic	groupings/sizes

Environmental	+	physiological	factors	
➙	Rela2ve	abundances	are	highly	dynamic

➡ Climate	forcing	➙	restructuring	
of	water	column	

➡ perturb	physiology	➙	pigments	
➡ ∴	rela2onships	no	longer	valid

Context	
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Problem	Statement

Phytoplankton	community	composi2on	(PCC)	models	
have	historically	relied	on	deriving	empirical	
rela2onships	between	HPLC	pigments	&	ocean	color

Pigments	are	an	imperfect	proxy	of	PCC

Co-occur	across	very	different	
taxonomic	groupings/sizes

Environmental	+	physiological	factors	
➙	Rela2ve	abundances	are	highly	dynamic

➡ Climate	forcing	➙	restructuring	
of	water	column	

➡ perturb	physiology	➙	pigments	
➡ ∴	rela2onships	no	longer	valid

Context	

But	it	was	all	we	had	for	
several	decades!
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Proposed	Solution
Machine	learning	+	less	ambiguous	metrics	of	PCC

Circumvents	the	need	for	perfect	
atmospheric	correc2on	
➙	Coastal,	op2cally	complex,	inland
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The era of satellite ocean color began in 1978 with the1

launch of NASA’s Coastal Ocean Color Scanner (CZCS) on2

board the Nimbus-7 spacecraft. Through measurement of the3

quantity and quality of the light reflected from the ocean,4

CZCS revolutionized our understanding of the intimate re-5

lationships between ocean physics and phytoplankton distri-6

bution in the world ocean (1). Generations of spaceborne7

sensors have subsequently followed, and satellite ocean color8

measurements now provide spatial and temporal distributions9

of phytoplankton (2) and other aquatic biogeochemical con-10

stituents (3), estimates of ocean primary productivity (4, 5),11

and have become a vital input to global models of Earth12

system processes and their response to a changing climate13

(6, 7).14

Ocean color is derived from the signal collected at the top15

of the atmosphere (TOA) by a satellite spectroradiometer.16

The majority of this signal is due to scattering from atmo-17

spheric aerosols and reflection by wind-generated whitecaps,18

with only ~10% maximum of the spectrum due to radiance19

either reflected from the ocean surface or scattered back out20

through the air-water interface. The atmospheric contribution21

must, therefore, be ‘subtracted’ from the TOA signal in order22

to derive the oceanic contribution. This is achieved opera-23

tionally through the process of atmospheric correction (AC),24

which removes the influence of sun glint, whitecaps formed25

by wind, and the contribution by atmospheric aerosols. This26

latter step takes advantage of the fact that the water body27

can be considered to be totally absorbing (i.e. black) in the28

near infrared (NIR). Any TOA signal detected at wavelengths29

in the NIR is then attributed to atmospheric contributions30

and a suitable aerosol radiance model is chosen to extrapolate31

to shorter wavelengths. This derived atmospheric radiance32

is subtracted from the total TOA spectrum, and the signal33

that remains is the water-leaving radiance. Remote sensing34

reflectance (Rrs, sr
≠1) i.e. the light exiting the water normal-35

ized to a hypothetical condition of an overhead Sun and no36

atmosphere (8, 9), can then be calculated. Following calcu-37

lation of Rrs, various approaches are used to estimate water38

constituent concentrations. These fall broadly into two classes39

of algorithms: i) empirical band-ratio algorithms, which are40

derived from the statistical relationship between the ratio of41

two or more wavebands (blue and green) of Rrs and in situ42

measurements of chlorophyll a concentration, Chl a (mg m
≠3),43

a proxy for phytoplankton biomass (2), and ii) semi-analytical44

algorithms that are based on a combination of radiative trans- 45

fer theory and empirically derived parameters, and that permit 46

the retrieval of inherent optical properties (IOPs) such as spec- 47

tral particulate backscattering, bbp (m≠1), and phytoplankton 48

absorption, aph (m≠1), coe�cients that can be related to the 49

water constituents of interest (3). 50

In a very general sense, AC approaches perform well over 51

the open ocean where the water is totally absorbing in the 52

NIR and the aerosol assemblage can be well modeled. How- 53

ever, AC performance becomes severely limited in coastal and 54

inland waters where bottom reflectance can contaminate water- 55

leaving signals, suspended sediments may produce a non-zero 56

reflectance in the NIR, and/or absorbing aerosols, e.g. those 57

generated by terrestrial anthropogenic sources (10), are dif- 58

ficult to model accurately. The performance of the in-water 59

algorithms is also degraded in these regions for a variety of 60

reasons. The band ratio algorithms were developed for use in 61

case 1 waters, i.e. those in which ocean color is dominated by 62

Chl a and all other optically active water constituents covary 63

(11). In case 2 waters (11), where other optically active water 64

constituents vary independently of Chl a (e.g. coastal waters), 65

band ratio algorithms often perform poorly as colored dissolved 66

organic material (CDOM) and suspended particulate material 67

compete with phytoplankton for the absorption and scattering 68

of blue photons, thereby confounding the algorithm’s assump- 69

tion of co-variability. Semi-analytical models may perform 70

satisfactorily in case 2 waters, but model parameters such as 71

the spectral slopes of CDOM+detrital absorption and partic- 72

ulate backscattering may need to be regionally tuned as their 73

local values can vary widely (12–14). Additionally, the signal 74

of interest may simply be swamped by competing processes – a 75

common occurrence in case 2 waters where CDOM absorption 76

coe�cients can be an order of magnitude or greater than that 77

of phytoplankton (15, 16). Finally, if AC is inaccurate, the 78

spectral shape of the retrieved Rrs spectrum may be distorted, 79

meaning that the starting point for any of these ocean color 80

models will be fundamentally flawed. As a result of these 81

challenges, satellite measurements made over such water bod- 82

ies are often unusable for quantitative studies. The loss of 83

information from these systems is particularly egregious as 84

they are vulnerable to climate and anthropogenic forcing (17), 85

play host to highly productive fisheries (18), or are regions 86

of intense atmospheric CO2 uptake (19) or sinking of organic 87

matter for climate-relevant time scales (20, 21). 88
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ML	Bayesian	framework

Figure:	h`ps://towardsdatascience.com/	

• Explore	data	using	ML	approaches	
in	a	Bayesian	framework	

• Mi2gates:	
➡ Overfikng	
➡ Data	sparsity	
➡ Provides	robust	es2mates	of	
uncertaintyDRAFT

Fig. 3. Out-of-sample observed vs. prediction mean from linear regression for a„ at
6 bands, featuring r2 and mean absolute error (mae) as goodness-of-fit measures.
Both axes are log-scaled
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Fig. 4. Out-of-sample observed vs. prediction mean from linear regression with
interactions for a„ at 6 bands, featuring r2 and mean absolute error (mae) as
goodness-of-fit measures. Both axes are log-scaled

the standard NOMAD parameters such as location, sea sur-258

face temperature, water column depth,and solar zenith angle.259

Rayleigh-corrected remote sensing reflectance (Rrc; sr
≠1) was260

derived using SeaDAS (version 6.2) assuming no aerosol, and261

is given by:262

Fig. 5. Out-of-sample observed vs. prediction mean from neural network with
interactions for a„ at 6 bands, featuring r2 and mean absolute error (mae) as
goodness-of-fit measures. Both axes are log-scaled

Rrc(⁄) = Lt(⁄) ≠ Lr(⁄)
F0 cos(◊0)tt0

[1] 263

where Lr is the Rayleigh scattering radiance 264

(µW cm
≠2

nm
≠1

sr
≠1), F0 the extraterrestrial solar irra- 265

diance (µW cm
≠2

nm
≠1), ◊0 is the solar zenith angle (degrees), 266

t the di�use transmittance from the satellite pixel to the 267

satellite (dimensionless) and t0 the di�use transmittance from 268

the sun to the pixel (dimensionless). 269

Fig. 6. In-situ sampling stations used in this study.

Data pre-processing. The NOMAD in situ aph(⁄) data was 270

provided at 20 wavelengths. This was reduced to 6 to match 271

SeaWiFS visible wavelengths of 412, 443, 490, 510, 555, 670 272

nm. Data points were discarded if no in situ aph(⁄) data 273

existed or had missing wavelengths, and if any of the satellite 274

wavelengths were missing or contained zero values. Three ad- 275

ditional pre-processing steps were performed: i) The principal 276
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Where	we	are	now…

Big	Ques5on????	
What	metric	of	PCC	should	be	inferred?

Ini2al	ML	approach:	
Exploratory	data	analysis	of	synthe5c	dataset	
• MERRA-NOBM	(NASA	Ocean	Biogeochemical	Model)*	
• Coupled	ocean-atmosphere	radia2ve	transfer	model	
• 6	phytoplankton	groups
*Greg	&	Rousseaux,	2017,	Front.	Mar.	Sci.,	hOp://dx.doi.org/10.3389/fmars.2017.00060	

Approach:	
• Detect	op2cal	signatures	
• Codify	ecological	principles	in	Bayesian	model(s)	
• Conduct	sensi2vity	analysis	

➡ Reduce	predictor	variables	to	those	that	are	
available	for	training

Can	be	guided	by	what	labelled	data	
will	realis2cally	be	available	for	
model	training

http://dx.doi.org/10.3389/fmars.2017.00060




Primary	hyperspectral	radiometer:	
• Ocean	Color	Instrument	(OCI)	(GSFC)	

2	contributed	multi-angle	polarimeters:	
• HARP2	(UMBC)	
• SPEXone	(SRON/Airbus)

Mission	elements:	
• Competed	science	teams	(ESD)	
• Competed	SVC	teams	(ESD)	
• Science	analysis	&	processing	(GSFC)	
• Spacecraft	(GSFC)	
• Mission	operations	(GSFC)

PACE	will	support	studies	of:	
• ocean	biology,	ecology,	&	

biogeochemistry	
• atmospheric	aerosols	
• clouds	
• land	

Legacies:	
• SeaWiFS,	MODIS,	VIIRS	
• POLDER,	MISR

Key	characteristics:	

• Jan.	2024	launch	
• Falcon	9	from	KSC/Cape	

Canaveral	
• 676.5	km	altitude	
• polar,	ascending,	Sun	

synchronous	orbit;	98o	
inclination	

• 13:00	local	Equatorial	
crossing	

• 3-yr	design	life;	10-yr	
propellant

Slides	courtesy	of	Jeremy	Werdell,	PACE	Project	Scien5st	NASA	GSFC



ocean color &  
the ocean color instrument

ocean color retrievals drive OCI’s 
design & performance requirements

• hyperspectral scanning radiometer

• (320) 340 – 890 nm, 5 nm resolution, 2.5 nm steps

• plus, 940, 1038, 1250, 1378, 1615, 2130, and 2250 nm

• 1-2 day global coverage

• ground pixel size of 1 km2 at nadir

• ± 20o fore/aft tilt to avoid Sun glint

• twice monthly lunar calibration

• daily on-board solar calibration

Slides	courtesy	of	Jeremy	Werdell,	PACE	Project	Scien5st	NASA	GSFC
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PACE	Measurement	Scales

Mouw	et	al.	(2015).	Remote	Sensing	of	Environment	160,	15-30,	hOps://doi.org/10.1016/j.rse.2015.02.001	

across non-glaciated land (Verpoorter, Kutser, Seekell, & Tranvik, 2014),
in addition to serving as a useful tool to retrieve water clarity (Barnes
et al., 2014; McCullough, Loftin, & Sader, 2013; Olmanson, Bauer, &
Brezonik, 2008), total suspended solids, chlorophyll concentration, indi-
cators of some dominant phytoplankton groups with limited success
(Torbick et al., 2013), and crude estimates of colored dissolved organic
matter (CDOM) under certain conditions (Kutser, 2012).

There are several future missions planned (IOCCG, 2012; http://
www.ioccg.org/sensors/scheduled.html) which collectively address
many of the current instrument shortcomings; for example the GEOsta-
tionary Coastal and Air Pollution Events (GEO-CAPE) mission (95°W,
375-m resolution, possibly hyperspectral) (Fishman et al., 2012) and
the Hyperspectral Infrared Imager (HyspIRI) (60-m resolution,
hyperspectral, 16-day revisit) (Devred et al., 2013). The Pre-Aerosol,
Clouds and ocean Ecosystem (PACE) mission will extend the current
polar-orbiting capability by substantially increasing spectral resolution.
The European Space Agency (ESA) and EUMETSAT are coordinating on
the upcoming Sentinel-3 platform with the Ocean and Land Colour In-
strument (OLCI), which is envisioned to provide continuity of MERIS-
class polar orbiting observations, in particular global 300 m resolution.
Additionally, Sentinel-2 and Landsat-8 are anticipated to have capability
useful for coastal and inland waters (Pahlevan & Schott, 2013) and
when combined together, will have revisit frequency of 5 days. The de-
sign specifications of PACE andOLCI in combinationwith GEO-CAPE and
HyspIRI are anticipated to provide greatly enhanced capability to effec-
tively enable wider applications for coastal and inland waters (Fig. 2).

2.2. Unresolved issues

Radiometer design has four types of requirements: 1) spatial cover-
age and resolution, 2) temporal coverage and revisit frequency, 3) spec-
tral coverage as well as number and position of spectral bands, and
4) radiometric quality (IOCCG, 2012). Relative to these requirements
for the open ocean, coastal and inlandwaters require additional consid-
erations for atmospheric correction and bio-optical algorithms as well
as for correcting effects due to bottom reflectance and bright-target ad-
jacency or stray light contamination.

2.2.1. Spatial resolution
For coastal and inlandwaters, processes such as nearshore tidal cur-

rents, resuspension events, and point-source delivery of nutrients,
suspended sediments and CDOM, as well as highly dynamic surface
algal bloom events can create variability on much smaller spatial scales
than for most open-ocean waters (Fig. 2). For well mixed conditions,
Bissett et al. (2004) showed optimal resolution of 100 m for nearshore
waters (within 200 m of shore) and N1 km for offshore waters (10 km
from shore). However, when phytoplankton that are able to regulate
their buoyancy are present, such as some cyanobacteria, 30 m spatial
resolution was found to significantly underestimate chlorophyll con-
centration due to the horizontal and vertical structure of the bloom
(Kutser, 2004). In the case of river plume regions, Aurin, Mannino, and
Franz (2013) demonstrated a resolution of ~500m or better is required
to resolve dispersion of OACs. Generally, for spatially non-uniform dis-
tribution of water properties, coarser spatial resolution can lead to un-
derestimates in derived biogeochemical properties (Kutser, 2004; Lee,
Hu, Arnone, & Liu, 2012), thus arguing for higher spatial resolution for
spatially heterogeneous water bodies.

2.2.2. Temporal resolution
Given the fast temporal dynamics and frequent cloud cover in coast-

al and inland waters, polar-orbiting sensors provide little information
on the short-term changes of water properties (hours to days) (Fig. 2).
For example, high-frequency changes in OACs driven by tidal and
subtidal currents require 3–4 h temporal-resolution (Chen, Hu,
Muller-Karger, & Luther, 2010, Tzortziou, Neale, Megonigal, Lee Pow,
& Butterworth, 2011). These rapid changes can only be characterized

with high-frequency measurements from a geo-stationary platform
(Table 1). Multiple images per day will also allow for quantification of
biological and biogeochemical rate processes such as primary produc-
tivity, net community production, and photochemical oxidation. Lee
et al. (2012) showed that eight GOCI measurements during a day
were sufficient to resolve diurnal changes in phytoplankton biomass
and primary productivity. In some cases, high-frequency observation
can be more important than high spatial resolution for algal blooms.
Some species have the ability to develop or exceptionally expand the
size of their blooms within several hours (Hu & Feng, 2014).

2.2.3. Spectral resolution
OACs in coastal and inland waters may vary independently. There-

fore, improved discrimination between OACs, particularly among phy-
toplankton, requires increased spectral resolution in coastal and
inlandwaters.While CDOMand non-algal particles (NAPs) decrease ex-
ponentially with increasing wavelength imparting only a monotonous
effect on reflectance, the spectral impacts by phytoplankton are highly
variable depending on species composition, pigment packaging and
physiological status (Kirk, 1994). Further, the ability to discriminate
phytoplankton groups beyond single dominance by a nuisance species
has emerged in oceanographic studies (IOCCG, 2014), and is highly de-
sirable for coastal and inlandwaters due to the importance phytoplank-
ton composition has on fisheries and whole ecosystem functioning.

With the exception of Hyperion (Pearlman et al., 2003) and HICO
(Lucke et al., 2011), the past and current suite of satellite sensors are
multispectral to optimize the detection of chlorophyll and other phyto-
plankton pigments (~440–560 nm and 670 nm), chlorophyll fluores-
cence (~685 nm), and CDOM and NAP absorption (412 nm) (Aurin &
Dierssen, 2012; Gitelson, Schalles, & Hladik, 2007; Lee, Carder, Arnone,
& He, 2007, Lee et al., 2007). With the exception of the MERIS 620 nm
and MODIS 645 nm bands, a large spectral region between 555 and
670 nm is not routinely sampled. However, the pigment phycocyanin
(PC), an indicator of cyanobacteria, absorbs light strongly around
620 nm (Bryant, 1981), allowing quantification of its concentration
from remotely sensed data (Mishra, Mishra, Lee, & Tucker, 2013;
Ruiz-Verdu, Simis, de Hoyos, Gons, & Pena-Martinez, 2008; Simis, Pe-
ters, & Gons, 2005, Simis et al., 2007; Qi, Hu, Duan, Cannizzaro, & Ma,
2014). Additionally, Trichodesmium have pigments with absorption
peaks in the blue green wavelengths (Dupouy et al., 2008). Exploitation
of specific bands associated with pigment absorption peaks enables the

Coastal & Inland 
Processes HICO,HyspIRI

SeaWiFS
ACE
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Fig. 2. Length- and timescales of coastal and inland processes in relation to heritage, cur-
rent and planned aquatic color sensors (SeaWiFS, MODIS, MERIS, VIIRS, HICO, GOCI,
OLCI) and missions (PACE/ACE, GEO-CAPE, HyspIRI). Planned sensors and missions are
italicized.
Adapted from Robinson (2010).

18 C.B. Mouw et al. / Remote Sensing of Environment 160 (2015) 15–30

https://doi.org/10.1016/j.rse.2015.02.001
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Geosynchronous	Li]oral	Imaging	and	Monitoring	Radiometer	
(GLIMR)

• Funded	under	NASA’s	Earth	Venture	Instrument	(EVI)	por{olio	
• PI:	Joe	Salisbury,	UNH	
• Deputy	PI:	Antonio	Mannino,	NASA	GSFC	
• An2cipated	launch	date	2026/27	
• Geosta2onary	orbit



Primary	Science	Scans	

• 6x/day	Gulf	of	Mexico	(GoMex)	
• 2x/day	US	East	Coast	
• 2x/day	US	West	Coast	
• 2x/day	Amazon	River	Plume	ROI	
• 2x/day	Caribbean	Sea	ROI	
• 3x/day	other	HAB	target	sites	
• Calibration	Sites	(MOBY/S.	Pacific/PACE)

GLIMR

Slides	courtesy	of	Ryan	Vandermuelen,	GLIMR	Inves5gator,	NASA	GSFC



Telescope	mounted	on	a	2-axis	 gimbal	 that	 actively	 scans	
an	imaging	spectrometer	across	the	Gulf	of	Mexico.

Geostationary	Littoral	Imaging	and	
Monitoring	Radiometer

Spatial Temporal Spectral

Signal	to	Noise

Hyperspectral		

• 340-1040	nm		
• <10	nm	UV-Vis	

resolution		
• <5	nm	UV-Vis	sampling	

High	Spatial	

• 300	m	GSD	nadir		
• ~328	m	Gulf	of	Mexico		
• <500	m	over	coastal	

CONUS			

High	Temporal		

• ~hourly	scans	of	Gulf	of	
Mexico	(6x/day)	

• 2x/day	other	regions	
• 3x/day	HAB	target	sites	

High	SNR	

• >	420,	UV	
• >	1000,	400-580	nm		
• >	750,	580-650	nm	
• >	580,	650-890	nm	

A	glimpse	into	GLIMR

Slides	courtesy	of	Ryan	Vandermuelen,	GLIMR	Inves5gator,	NASA	GSFC



The	temporal	cadence	of	GLIMR	will	enable	the	
observation	of		physical	processes	that	regulate	
the	spatial-temporal	dynamics	of	biological	and	
biogeochemical	 processes	 and	 constituent	
distributions.		
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Slides	courtesy	of	Ryan	Vandermuelen,	GLIMR	Inves5gator,	NASA	GSFC
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Suborbital	Ocean	Color	Plaaorms

• UAVs	
• Moorings	
• Ships	of	opportunity	
• Gliders	
• Wavegliders	
• SailDrones…

© 2022 The Ecological Society of America. Front Ecol Environ doi:10.1002/fee.2472

Drones address a blind spot for oceanography REVIEWS  3

and temporal scales relative to those of sat-
ellites (finer scales) and in- situ platforms 
(larger scales) is precisely where drones can 
fill gaps of observation and hypothesis test-
ing in biological oceanography.

Opportunities for drones in biological 
oceanography

Owing to their appealing scope, character-
istics, modular sensing capabilities, and on- 
demand deployment, drones are increasingly 
used in several areas of marine science 
including animal monitoring (Johnston 
2019), coral health analysis (Casella et al. 
2017), marine geomorphology (Seymour 
et al. 2017), and coastal habitat mapping 
(Gray et al. 2018). However, both operational 
and optical challenges have limited their use 
for oceanographic applications, particularly 
in biological oceanography.

Large and sophisticated drones of mili-
tary design are increasingly being deployed 
for oceanographic applications, such as 
monitoring ocean surface processes 
(Reineman et al. 2016) and tropical cyclone 
observations (Guimond et al. 2016). These 
larger platforms will surely continue to con-
tribute sustained observations of the ocean, 
but they typically require extensive ship-  or 
shore- based infrastructure and logistical 
support, with accompanying extensive 
financial requirements. At the same time, 
researchers are adopting drones to observe 
fine- scale physical oceanography. Example 
applications include examining boundary layer processes 
(Zappa et al. 2020), observing ocean– atmosphere interac-
tions (Cassano et al. 2016), and monitoring groundwater 
discharge through thermal imagery (Mallast and Siebert 
2018).

The limited use of drones in biological oceanography con-
trasts with the advantages they offer for spatial ecology 
(Anderson and Gaston 2013) and their rapid uptake among 
many geoscience- related fields (Kelleher et al. 2018). Although 
example applications exist, most notably in monitoring harm-
ful algal blooms, such work is often conducted in inland or 
estuarine waters (Kislik et al. 2018). This pattern may stem 
from the engineering challenges, operational complexities, and 
high cost of research- grade sensors, as well as characteristics of 
the ocean surface that challenge passive light- based sensing 
(wind- generated waves, varying glare, foam presence), the 
complexity of retrieval algorithms (Ruddick et al. 2019), and 
operational constraints imposed by the marine environment 
(ship- based launch and takeoff; risk of wind, rain, and sea 
spray) (Johnston 2019).

Fortunately, lessons learned by the optical oceanography 
community for satellites, occupied aircraft, and low- altitude 
platforms (Neeley and Mannino 2019) can be applied to help 
overcome several of these hurdles. However, integrating 
appropriate sensors at proper viewing geometries (Figure 3) 
and accounting for sun glint and reflected skylight remain 
obstacles for many biological oceanographers who might 
otherwise consider drones to observe and measure at fine 
scales. Best practices need to be shared to mitigate these 
obstacles (WebPanel 1). Notably, even with these best prac-
tices, glint and reflected skylight are often not fully elimi-
nated. On occasion, flights must (unavoidably) be conducted 
around solar noon, when glint is most intense, and many 
low- cost drones do not have the capacity for a sensor to be 
mounted on a gimbal in order for that sensor to be main-
tained at appropriate viewing angles. Recently, an image- 
processing approach using image texture as a glint indicator 
was developed for removing glint from imagery (Cavanaugh 
et al. 2021). This promising approach, alongside other recent 
work evaluating common techniques for removing reflected 

Figure 2. Stommel diagram of physical and biological processes studied in biological oceanog-
raphy. Many occur within spatial and temporal resolutions of science- grade satellite platforms, 
here represented by Moderate Resolution Imaging Spectroradiometer (MODIS; blue rectangle) 
and instruments aboard the International Space Station (ISS; purple), but large ground sample 
distances and long revisit intervals relegate many more to a “remote- sensing blind spot” (red). 
Drone techniques (green) address the larger scales of this blind spot with fine spatial resolu-
tions and the ability to be deployed multiple times within a day or multiday period.

• These	all	address	sub-pixel	variability	and	fill	satellite	spa2al/temporal	gaps	
• Autonomous	measurements	will	become	increasingly	important	for	ocean	
observa2ons	&	model	valida2on

Gray	et	al.	(2022).		Fron5ers	in	Ecology	and	the	Environment,	hOps://
doi.org/10.1002/fee.2472	

https://doi.org/10.1002/fee.2472
https://doi.org/10.1002/fee.2472
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Q:	How	to	promote	data	sharing	and	the	crea5on	of	integrated	archives	with	
consistent	data	quality	and	format	requirements?

• All	NASA-funded	inves2gators	are	obliged	to	submit	their	data	(ocean	
color	and	oceanographic)	to	the	SeaBASS	repository	(h`ps://
seabass.gsfc.nasa.gov/)		

• The	community	should	strive	to	adhere	to	FAIR	data	principles:	
- Findable,	Accesible,	Interoperable,	Reusable	(h`ps://www.go-
fair.org/)	

- However,	this	requires	funded	support	to	achieve!	
• NASA	is	strongly	encouraging	a	push	to	open	science:	

- Transform	to	Open	Science	(TOPS	h`ps://science.nasa.gov/open-
science/transform-to-open-science)

https://seabass.gsfc.nasa.gov/
https://seabass.gsfc.nasa.gov/
https://www.go-fair.org/
https://www.go-fair.org/
https://science.nasa.gov/open-science/transform-to-open-science
https://science.nasa.gov/open-science/transform-to-open-science
https://science.nasa.gov/open-science/transform-to-open-science
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Q:	How	to	promote	data	sharing	and	the	crea5on	of	integrated	archives	with	
consistent	data	quality	and	format	requirements?

• The	PACE	mission	has	a	dedicated	Applica2ons	Team	
- Erin	Urquhart,	Natasha	Sadoff	
- Early	adopters	program	to	prime	future	community	for	using	PACE	
data	products	

- Community	of	Prac2ce	
- h`ps://pace.oceansciences.org/applica2ons.htm	

Erin	Urquhart,	Project	
Applica2ons	Coordinator	
erin.u.jephson@nasa.gov	

Natasha	Sadoff:	Project	
Applica2ons	Deputy	
Coordinator	
natasha.sadoff@nasa.gov	

https://pace.oceansciences.org/applications.htm
mailto:erin.u.jephson@nasa.gov
mailto:natasha.sadoff@nasa.gov
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Movie	courtesy	of	Jeremy	Werdell,	PACE	Project	Scien5st	NASA	GSFC


