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Myths about Machine Learning

Myths
u Machine learning is new and 

untested.

u Machine learning approaches are a 
black box.

u Machine learning approaches throw 
away our first-principles 
understanding of systems.

u Machine learning approaches are 
complicated.

Merits
u Machine learning is not new to 

ecological forecasting and has a 
30-year track-record.

u Can yield actionable and predictive 
insight into mechanism

u Can be part of forecasting non-
stationary and non-equilibrium 
futures.

u Can be minimally assumptive and 
surprisingly unsophisticated!



Machine Learning is 
new and untested.

Machine learning has a 
30-year track-record in 
ecological forecasting 
(including marine and 

coastal systems!).

…Depending on what you mean by 
machine learning.



Definitions and History



What do we we mean by  
“machine learning”?

http://www.cognub.com/index.php/cognitive-platform/

Supervised: labeled inputs and 
outputs.
Ø Predictors vs. predictees
Ø Categories

“Use of data and algorithms to 
imitate the way that humans 
learn, gradually improving its 
accuracy.”
“Through the use of statistical 
methods, algorithms are 
trained to make classifications 
or predictions.”

– IBM.com

Unsupervised: eliminates 
human intervention.



What do we we mean by  
“machine learning”?

http://www.cognub.com/index.php/cognitive-platform/

Gulf-stream meander: Unsupervised
self-organizing map (ANN) to do 
feature selection and clustering.



What do we we mean by  
“machine learning”?

http://www.cognub.com/index.php/cognitive-platform/

Cytobot: Image classification
used to support the pipeline from 
raw data to models.



What do we we mean by  
“machine learning”?

http://www.cognub.com/index.php/cognitive-platform/

This talk: Machine learning to do 
the actual forecast.



Sugihara & May 1990.
Sugihara 1994.

u If ecological measurements are 
random variations within an 
equilibrium system, they shouldn’t 
be predictable!

u W.E. Allens diatom counts from the 
end of Scripps Pier (1929-1939).

u Simplex projection: nearest neighbor 
forecasting.

u S-map: locally weighted linear 
regression (kernel regression).



Sugihara & May 1990.

u Simplex projection: knn (nearest 
neighbor) forecasting with a 
single parameter, E.

u Predict first-differences in 
weekly counts (remove 
persistence).

u Autoregressive linear predictor 
𝛒 = 0.13

u Significant forecast skill to 2-
weeks.

(Weeks)



Sugihara 1994.

u Sugihara 1994: S-map.

u 1 additional tunable parameter.

u Explicitly compare multivariate 
linear predictor to a nonlinear 
predictor.



Think of “supervised Machine learning for 
forecasting” as universal function 
approximation.

u “Machine-learning”

u “Non-parametric”

u “Model-free”

u “Non-structural”

u “Empirical model”

Universal function approximators



u Nearest neighbor forecasting.

u Generalizations of regression.

u Local linear regression/kernel 
regression.

u Dynamic linear models.

u Artificial neural networks.

u Gaussian processes.

u Random forest.

• All of these can incorporate 
endogenous and exogenous 
variables.
• Some treat observation error 

implicitly (averaging), some can 
treat it explicitly.
• Process uncertainty looks quite 

different when there are no 
parameters.
• “Tunability”/ “interpretability” 

can vary widely.

Think of “supervised Machine learning for 
forecasting” as universal function 
approximation.



Tools look a lot like non-parametric surface 
fits but often we want dynamics not a 
response surface.



Tools look a lot like non-parametric surface 
fits but often we want dynamics not a 
response surface.
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“Takens Theorem” — observing change-over-time gives a window into the coupled 
dynamics of the system even when there are unobserved state variables.



Tools look a lot like non-parametric surface 
fits but often we want dynamics not a 
response surface.
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“Takens Theorem” — observing change-over-time gives a window into the coupled 
dynamics of the system even when there are unobserved state variables.

Capability: robust 
to unobserved 
variables

Time-lag values of 
measured variables 
can be used as “fill-
in” state variables.



ML lets us sidestep model misspecification aka
the “other” error aka structural uncertainty.

All use variations of empirical dynamic 
modeling (ML) to investigate recruitment 
prediction and S-R relationship.

Across these cases, evidence that blaming 
poor fits on observational and processed 
uncertainty can mask a deeper problem.

“What we know for sure that just ain’t so”.



ML lets us sidestep model misspecification aka
the “other” error aka structural uncertainty.

All use variations of empirical dynamic 
modeling (ML) to investigate recruitment 
prediction and S-R relationship.

Across these cases, evidence that blaming 
poor fits on observational and processed 
uncertainty can mask a deeper problem.

“What we know for sure that just ain’t so”.

Capability: sidestep 
or capture structural 
uncertainty.



Application to “red tide” forecasting.
Talking about time-scales; touching on limitations

John A. McGowan, Hao Ye, Melissa L. Carter, Charles T. 
Perretti, Kerri D. Seger, Alain de Verneil, George Sugihara

Drew Lucas, Art Miller, Steve Munch, Enrique Curchitser



Coastal Algal Blooms in Southern 
California

Chlorophyll mg/m3

Southern California Bight

Scripps Pier, La Jolla

(1084 ft.)

McGowan et al. 2017 Ecology [10.1002/ecy.1804]



• Red tide observations in La Jolla date back to 
Allen (1917-1945).
• Systematic data collection beginning in 1983 

(n=2595). [Chlorophyll blooms].

Red Tides/Coastal Algal Blooms in 
Southern California

Why are we 
using ML?



• Red tide observations in La Jolla date back to 
Allen (1917-1945).
• Systematic data collection beginning in 1983 

(n=2595). [Chlorophyll blooms].

Red Tides/Coastal Algal Blooms in 
Southern California

Uncertain drivers and 
mechanisms.

Why are we 
using ML?

Hypothesis poorly 
supported in traditional 

linear statistical analysis.



• Red tide observations in La Jolla date back to 
Allen (1917-1945).
• Systematic data collection beginning in 1983 

(n=2595). [Chlorophyll blooms].

Red Tides/Coastal Algal Blooms in 
Southern California

Uncertain drivers and 
mechanisms.

Are they 
predictable 

at all?

Why are we 
using ML?

Hypothesis poorly 
supported in traditional 

linear statistical analysis.



McGowan et al. 2017: Short-term Forecasting
Out-of-sample
ultimate test
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In-sample
variable selection

Blooms are stochastic chaos: deterministic 
dynamics forced by high-dimensional physics.

Multi-model suitability: Some proximal drivers 
not measured, need model averaging.



McGowan et al. 2017: Short-term Forecasting
Out-of-sample
ultimate test
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In-sample
variable selection

Blooms are stochastic chaos: deterministic 
dynamics forced by high-dimensional physics.

Multi-model suitability: Some proximal drivers 
not measured, need model averaging.

Are red tides going to get more 
frequent under expected 
climate change?

Iterative forecasting with ML to 
predict frequency statistics.



Iterative forecasting with 
short-term predictor 
exposes challenge:

u Considering systems with sharp Lyapunov 
horizons, but underlying behavior driven 
by climate.

u Cumulative distributions: toy model 
realization (blue) versus the iterated ML 
forecast (red).

u Under short time horizons, the 
distribution is quite accurately 
recovered, but… ï� 0 � 2 3 4 5 6
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u Under longer time horizons, bias 
towards the median becomes more 
evident, and the frequency of large 
events is under-estimated.

u At 50 time-steps, ML fails to simulate 
any outbreaks over 2 (normalized units) 
despite these occurring roughly 10% of 
the time in the true system.

u Add stochasticity based on uncertainty. 
[Turned out to be easiest just to 
subsample].
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Iterative forecasting with 
short-term predictor 
exposes challenge:



Challenge: Bias and Treating ML Methods 
as a Black-Box.

u “PROPHET” and the collapse of 
Zillow.

u Like parametric models, 
machine learning approaches 
have tunable knobs.

u Can be very opaque what 
their effect is.

u Forecast bias.

https://towardsdatascience.com/in-defense-of-zillows-
besieged-data-scientists-e4c4f1cece3c

https://lightersideofrealestate.com/



u Under longer time horizons, bias 
towards the median becomes more 
evident, and the frequency of large 
events is under-estimated.

u At 50 time-steps, ML fails to simulate 
any outbreaks over 2 (normalized units) 
despite these occurring roughly 10% of 
the time in the true system.

u Add stochasticity based on uncertainty. 
[Turned out to be easiest just to 
subsample].
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Iterative forecasting with 
short-term predictor 
exposes challenge:

Simple approach made 
understanding and 
correcting bias… simple!



Simple 
changes in 
variable

(1) Direct forcing of EDM model

31

(2) EDM Scenario Exploration (climate sensitivity analysis)

Red Tides 
under climate 

change

Multivariate 
EDM

ROMs 
predictions 
of coastal 

environment

Red Tides 
under 

climate 
change

Multivariate 
EDM

Qualitative predictions of 
coastal environment.

+5%-5%

Extrapolate EDM short-term forecasting  
to Non-Analogue Futures



32

Climate sensitivity, change in nitrite.

EDM predicts bloom frequency 
will increase/decrease by 50% 
with a 5% increase/decrease in 
nitrite from current levels.
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Climate sensitivity, change in nitrite.

EDM predicts bloom frequency 
will increase/decrease by 50% 
with a 5% increase/decrease in 
nitrite from current levels.
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Multi-model predictions of climate sensitivity
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Extrapolate EDM short-term forecasting  
to Non-Analogue Futures
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ROMs Forcing

Curchitser, E. N.; Dussin, R.; Stock, C. A.

Regional Ocean Modeling System (ROMS) + 
NOAA/GFDL's Carbon, Ocean 
Biogeochemistry and Lower Trophics
(COBALT) biogeochemical model

Forced by GFDL ESM2M RCP8.5 future 
projection.

SIO pier

San Clemente

Pt. Dume

Santa Barbara

Extrapolate EDM short-term forecasting  
to Non-Analogue Futures
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SIO pier

San Clemente

Pt. Dume

Santa Barbara

SST

Extrapolate EDM short-term forecasting  
to Non-Analogue Futures
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1980-2010

2020-2050

1980-2010 (SIO Pier)

ROMs model

Observed

However, the EDM models were built on near-shore 
observations and the ROMs model is not.

Pr
ob

ab
ili

ty
D

en
si

ty

Sea Temperature Water Density Wind (u)

SilicateNitrate



SST ↓
Density ↓
u-Wind ?
Silicate ↑
Nitrate ↑

If you are willing to assume that the direction of 
change in the ROM is the same as near-shore 
environment…

…our best prediction is that there will be an 
increase in red tide frequency along the San 
Diego coast moving towards 2050.



SST ↓
Density ↓
u-Wind ?
Silicate ↑
Nitrate ↑

If you are willing to assume that the direction of 
change in the ROM is the same as near-shore 
environment…

…our best prediction is that there will be an 
increase in red tide frequency along the San 
Diego coast moving towards 2050.

Challenge: taking 
advantage of new 
data streams.



Application to hypoxia in Lake 
Geneva.
Overcoming challenge of interpretability; hybrid approaches to leverage 
first-principles understanding.

Damien Bouffard, Victor Frossard, Robert Schwefel, 
Johnb Mellack, George Sugihara.

Tom Lorimer.



Hybrid Approaches to Hypoxia: Lake 
Geneva Study

u Fixed, parameterized rates really 
most immediately appropriate to 
capture a fixed community / food-
web.

u These are changing! Non-stationary 
world.

u Low-dimensional nonlinear 
regression (aka simple supervised 
machine learning) can represent 
changing interactions between 
variables (rates).

u Deyle et al. PNAS in press



Parametric modeling of stratification has shown 
predictive success, but extending the framework to 
water-quality has been harder.

Simstrat (v2.0) predictions of thermal structure
simstrat.eawag.ch/LakeGeneva

Annual predictions of DOB from coupled 
parametric model  (Schwefel et al. 2016)
doi.org/10.1002/2016WR019194

RMSE = 0.88ºC

Weather
Inflow
Bathymetry

1D Physical State
1D Physical State
Chlorophyll

DO

https://simstrat.eawag.ch/LakeGeneva
https://doi.org/10.1002/2016WR019194


Parametric description faces a trade-off between over-
simplification and over-fitting that presents a major obstacle 
for management.

Only included effect of 
phosphorous indirectly through 
observed chlorophyll

Observed rates of oxygen depletion 
vary substantially in and between 
years

(Schwefel et al. 2016)
doi.org/10.1002/2016WR019194

https://doi.org/10.1002/2016WR019194


One-step forecasts of DOB show potential to 
capture emergent dynamics of BGC with 
Empirical Dynamics

Incorporating biogeochemical 
variables leads to improved 
forecasts

Nonlinearly tuned S-map models 
forecast substantially better than 
vector auto-regression

rEDM package available at
(github.com/SugiharaLab/rEDM)
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http://github.com/SugiharaLab/rEDM


Interpretability: extracting rates and 
interaction coefficients.

positive negative

Deyle et al. 2016 Proc Roy Soc B



Interpretability: extracting rates and 
interaction coefficients.

positive negative

Deyle et al. 2016 Proc Roy Soc B



Hybrid Approaches to Hypoxia: Lake 
Geneva Study

u Fixed, parameterized rates really 
most immediately appropriate to 
capture a fixed community / food-
web.

u These are changing! Non-stationary 
world.

u Low-dimensional nonlinear 
regression (aka simple supervised 
machine learning) can represent 
changing interactions between 
variables.

Rates

Deyle et al. PNAS in press

Increasing negative 
impact of CHL at 
lower phosphorous



First-princples + 
empirical

Deyle et al. PNAS in press

2 box model but instead of 
parameterized equations for 
ecosystem processes (e.g. 
primary production and 
respiration), use empirical 
dynamic models.



Closing Thoughts



There are many flexible approaches in 
machine learning to make forecasts but 
practical considerations can lead to 
strong preferences.

u Kernel Regression:

u Have to “carry the 
data around” to use 
the empirical model.

u Random Forest

u Relatively lightweight 
specification, can just 
carry around a sparse 
matrix and a few other 
things.



There are many flexible approaches in 
machine learning to make forecasts but 
underlying assumptions can limit 
interpretability of some versus others.

u Kernel Regression:

u Dynamic interactions 
can be read nearly 
straight out of the 
model.

u Random Forest

u Dynamic interactions 
are 0 almost 
everywhere and 
undefined on a 
sparse, finite set.



There are many flexible approaches in 
machine learning to make forecasts but 
accessibility remains a major challenge 
that can override any other consideration.

u Kernel Regression:
u Can characterize 

forecast uncertainty in 
a frequentist

u Full version controlled, 
documented R, Python, 
and C++ packages (Hao 
Ye, Joseph Park) with 
training materials.

u Gaussian Processes:
u Can use a fully Bayesian 

framework for 
uncertainty propagation.

u Currently available 
packages poorly matched 
to ecological forecasting 
use-cases.

github.com/SugiharaLab

http://github.com/SugiharaLab/rEDM


Thank you!



Capabilities
u Sidestep structural uncertainty.

u Robust to unobserved variables.

u Practically cope with shifts in 
ecology, rather than trying to 
approximate systems as fixed and 
unchanging.

u Can be part of forecasting non-
stationary and non-equilibrium 
futures.

Challenges
u Interoperability of modeling 

frameworks.

u Both the parametric hydrodynamic 
model and our “EDM” package 
went through major version turn-
over.

u Using as “black boxes” can obscure 
bias.

u Knobs & Tuning can be hiding (what 
data do you put in?).


