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Myths and Merits.
Definitions and history.
Application to red tide forecasting.
» Time-scales.
» Limitations (e.g. bias)
» Application to hypoxia.
» Non-stationarity.

» Actionable and predictive insight into mechanism.

» Hybrid approaches: incorporating first-principles understanding when at hand;
structural agnosticism.

» Closing Thoughts




Myths about Machine Learning

Myths Merits
» Machine learning is new and » Machine learning is not new to
untested. ecological forecasting and has a

» Machine learning approaches are a 30-year track-record.

black box. » Can yield actionable and predictive

» Machine learning approaches throw insight into mechanism

away our first-principles » Can be part of forecasting non-
understanding of systems. stationary and non-equilibrium
» Machine learning approaches are futures.
complicated. » Can be minimally assumptive and
. surprisingly unsophisticated!




Machine learning has a
30-year track-record in
ecological forecasting
(including marine and
coastal systems!).

Machine Learning is
new and untested.

J

...Depending on what you mean by
machine learning.




Definitions and History




What do we we mean by
“machine learning”?
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“Use of data and algorithms to
imitate the way that humans
learn, gradually improving its
accuracy.”

“Through the use of statistical
methods, algorithms are
trained to make classifications
or predictions.”

- IBM.com

Supervised: labeled inputs and

outputs.
> Predictors vs. predictees
> Categories

Unsupervised: eliminates
human intervention.




What do we we mean by
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self-organizing map (ANN) to do

feature selection and clustering.

Classification
® Customer

Fraud @® Retention

Meaningful Detection ®

compression
DIMENSIONALLY o .
. REDUCTION CLASSIFICATION [ ) D|agnost|cs
Big data °
Visualisation

® Forecasting

Recommended
Systems

SUPERVISED

LEARNING @ Predictions

REGRESSION

Targetted
Marketing

® Process
Optimization

MACHINE
LEARNING

®
Customer New Insights

Segmentation

REINFORCEMNET
LEARNING

Real-Time Decisions @ ® Robot Navigation

Game Al ® ® Skill Aquisition

(]
Learning Tasks

http://www.cognub.com/index.php/




What do we we mean by
Cytobot: Image classification

“machine learning”? eal
used to support the pipeline from
/ raw data to models.
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What do we we mean by
“machine learning”?
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Sugihara & May 1990.
Sugihara 1994.

» If ecological measurements are
random variations within an
equilibrium system, they shouldn’t
be predictable!

» W.E. Allens diatom counts from the
end of Scripps Pier (1929-1939).

» Simplex projection: nearest neighbor
forecasting.

» S-map: locally weighted linear
regression (kernel regression).

Published: 19 April 1990

Nonlinear forecasting as a way of
distinguishing chaos from measurement
error in time series

George Sugihara & Robert M. May

Nature 344, 734-741(1990) | Cite this article

1976 Accesses | 1151 Citations | 11 Altmetric | Metrics




Sugihara & May 1990.

» Simplex projection: knn (nearest
neighbor) forecasting with a
single parameter, E.

» Predict first-differences in
weekly counts (remove
persistence).

» Autoregressive linear predictor
p=0.13

» Significant forecast skill to 2-
weeks.

Correlation Coefficient (P} =

0.5 ~

0.4+

1.3+

([N

Published: 19 April 1990

Nonlinear forecasting as a way of
distinguishing chaos from measurement
error in time series

George Sugihara & Robert M. May

Nature 344, 734-741(1990) | Cite this article

1976 Accesses | 1151 Citations | 11 Altmetric | Metrics
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Sugihara 1994.

» Sugihara 1994: S-map.
» 1 additional tunable parameter.

» Explicitly compare multivariate
linear predictor to a nonlinear
predictor

Z C:(5)X:(j)-

B =AC,

Bi = w(||X, — X,|)Yi, Ay =w(|X: — X:|)) X:(5)

w(d) = e_ed/‘z,




Think of “supervised Machine learning for
forecasting” as universal function
approximation.

vV v v v Vv

¢ M ac h ine- le arnin g » Ecological Applications, 27(T), 2018, pp. 2048-2060
© 2017 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited.

“Non-parametric”
Prediction in ecology: a first-principles framework
“Model-free” gy princip
MicHAEL C. DIETZE!
“ N on- St ru Ct ura l ” Department of Earth and Environment, Boston University, 685 Commonwealth Avenue, Room 130,
Boston, Massachusetts 02215 USA
“Empirical model” \

Yir1 = f (Y1, X0 + o) + &

Universal function approximators



Think of “supervised Machine learning for
forecasting” as universal function
approximation.

» Nearest neighbor forecasting.
» Generalizations of regression.  All of these can incorporate

» Artificial neural networks. treat it éxplicitly.
» Gaussian processes. * Process uncertainty looks quite

Yir1 =f (Y1, Xi|0 + o) + &

endogenous and exogenous
variables.

« Some treat observation error
implicitly (averaging), some can

» Local linear regression/kernel
regression.

» Dynamic linear models.

different when there are no
parameters.

« “Tunability”/ “interpretability”
can vary widely.

Random forest.



Tools look a lot like non-parametric surface
fits but often we want dynamics not a

response SUFfCICG.

[Chl A]
(in 1 week)

+ data
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¢ forecast




Tools look a lot like non-parametric surface
fits but often we want dynamics not a
response surface.

“Takens Theorem” — observing change-over-time gives a window into the coupled
dynamics of the system even when there are unobserved state variables.
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Tools look a lot _like non-bparametric surface
fits but often yTime-lag values of

response surfdmeasured variables
“Takens Theorem” — obsd ¢ N be used as “f-lll the coupled
dynamics of the system e\ S.

m state variables.

.
.
-~
. !
] -~ o~
N

Capablllty robust
to unobserved x

variables /
= — X,

X

t

i
-
L4
.
-
-
N o~
.

: >
E}

time — t



ML lets us sidestep model misspecification aka
the “other” error aka structural uncertainty.

ICES Journal of Marine Science (2018), 75(3), 903-911. doi:10.1093/icesjms/fsx202

Review Article

Assessing causal links in fish stock-recruitment relationships

Maud Pierre™, Tristan Rouyer’, Sylvain Bonhommeau?, and J. M. Fromentin®

Received: 21 November 2017 | Revised: 9 May 2018 Accepted: 23 May 2018
DOI: 10.1111/af.12304

ORIGINAL ARTICLE

Nonlinear dynamics and noise in fisheries recruitment: A global
meta-analysis

Stephan B. Munch®?® | Alfredo Giron-Nava®® | George Sugihara®

Article | Open Access | Published: 24 April 2020
Circularity in fisheries data weakens real
world prediction

Alfredo Giron-Nava, Stephan B. Munch, Andrew F. Johnson, Ethan Deyle, Chase C.

James, Erik Saberski, Gerald M. Pao, Octavio Aburto-Oropeza & George Sugihara

Scientific Reports 10, Article number: 6977 (2020) | Cite this article

389 Accesses | 1 Altmetric | Metrics

All use variations of empirical dynamic
modeling (ML) to investigate recruitment
prediction and S-R relationship.

Across these cases, evidence that blaming
poor fits on observational and processed
uncertainty can mask a deeper problem.

“What we know for sure that just ain’t so”.




ML lets us sidestep model misspecification aka
the “other” error aka structural uncertainty.
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Across these cases, evidence that blaming
poor fits on observational and processed
uncertainty can mask a deeper problem.

“What we know for sure that just ain’t so”.




Application to “red tide” forecasting.

Talking about time-scales; touching on limitations

John A. McGowan, Hao Ye, Melissa L. Carter, Charles T.
Perretti, Kerri D. Seger, Alain de Verneil, George Sugihara

Drew Lucas, Art Miller, Steve Munch, Enrique Curchitser
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Why are we
using ML?

* Red tide observations in La Jolla date back to
7 & Allen (1917-1045) =+ v

® Systematic data collection beginning in 1983
n=2595). [Chlorophyll blooms].




Red Tides/Coastal Algal Blooms in
Southern _California
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Red Tides/Coastal Algal Blooms in
Southern _California

250

R Why are we
g8 oo using ML?
3 sof : s .
0 PPN NP OMIE, VOIEOIigLs A0 P Sioag L8 TR - G ¥ e I ' e £ . 2a.
" e L8P Hypothesis poorly

Uncertain drivers and [t o o norted in traditional

B— mechnisms. : ; linear statistical analysis.
S Red tide observations In La JUIa vate Dacn o

MRS Allen (1917-19¢

® Systematic dat:
(n=2595). [Chic

>y P
o -




McGowan et al. 2017: Short-term Forecasting

In-sample
variable selection
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Blooms are stochastic chaos: deterministic
dynamics forced by high-dimensional physics.
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McGowan et al. 2017: Short-term Forecasting

In-sample Out-of-sample
variable selection ultimate test

Are red tides going to get more
frequent under expected e
climate change?

# embeddings

Iterative forecasting with ML to
°2 | predict frequency statistics.

foreca

Blooms are stochastic chaos: deterministic
dynamics forced by high-dimensional physics.

0 10 20 30 40 500 10 20 30 40 500 10 20 30 40 50

Multi-model suitability: Some proximal drivers Observed chi-a (mg/L)
not measured, need model averaging.



Iterative forecasting with
short-term predictor
exposes challenge:

o
o}
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O
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Considering systems with sharp Lyapunov

horizons, but underlying behavior driven
by climate.

Cumulative distributions: toy model

realization (blue) versus the iterated ML
forecast (red).

Under short time horizons, the
distribution is quite accurately

recovered, but... 40 1 2 3 4 5 6

Infected




Iterative forecasting with
short-term predictor
exposes challenge:

Under longer time horizons, bias
towards the median becomes more
evident, and the frequency of large
events is under-estimated.

At 50 time-steps, ML fails to simulate
any outbreaks over 2 (normalized units)
despite these occurring roughly 10% of
the time in the true system.

Add stochasticity based on uncertainty.
[Turned out to be easiest just to
subsample].

©
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Challenge: Bias and Treating ML Methods
as a Black-Box.

» “PROPHET” and the collapse of
Zillow.

» Like parametric models,
machine learning approaches
have tunable knobs.

» Can be very opaque what

their effect is. p \:
» Forecast bias. | [
https://towardsdatascience.com/in-defense-of-zillows- “'§ o 00“398 ﬂf allthe hﬂmes
besieged-data-scientists-e4c4f1cece3c Lillow accurately valuated.

https://lightersideof




Iterative forecasting with
short-term predictor
exposes challenge:

Under longer time horizons, bias

At 50 time-steps,
any outbreaks ove
despite these occurring roughly 10% of
the time in the true system.

Add stochasticity based on uncertainty.
[Turned out to be easiest just to
subsample].
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Extrapolate EDM short-term forecasting
to Non-Analogue Futures

(1) Direct forcing of EDM model

NOLN :
predictions Multivariate Red Tides

under climate

of coastal EDM
change

environment

(2) EDM Scenario Exploration (climate sensitivity analysis)

Qualitative predictions of
coastal environment.

Simple Red Tides

changes in Multivariate BB under

variable EDM climate
-5% +5% change




Extrapolate EDM short-term forecasting
to Non-Analogue Futures

Climate sensitivity, change in nitrite.

1.0 as.factor(scale) 4| 4.7% 6.7%
>‘ i
-‘Z’ down
g neutral
0.5 - —
O 31
up 3
©
O
2
0.0 - =
0 2 4 6 S
nitrite_m1wk o
i)
<
)

EDM predicts bloom frequency
will increase/decrease by 50%

with a 5% increase/decrease in
nitrite from current levels.

—_
1

5% 0%
Nitrite Scenario




Extrapolate EDM short-term forecasting
to Non-Analogue Futures

Climate sensitivity, change in nitrite.

1.0 as.factor(scale) | | 4.7% 6.7%
-‘g down
g neutral
0.5 - " ;
0.0 1 >
0 2 4 6
nitrite_m1wk

EDM predicts bloom frequency < 1
will increase/decrease by 50%
with a 5% increase/decrease in
nitrite from current levels.

5% 0% +5%
Nitrite Scenario




Extrapolate EDM short-term forecasting
to Non-Analogue Futures

Multi-model predictions of climate sensitivity
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Extrapolate EDM short-term forecasting
to Non-Analogue Futures

ROMS FO I‘Cing 34'5'..-_ - santa Barbara
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Extrapolate EDM short-term forecasting
to Non-Analogue Futures
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However, the EDM models were built on near-shore

observations and the ROMs model is not.
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If you are willing to assume that the direction o
change in the ROM is the same as near-shore
environment...

kkkkk

...our best prediction is that there will be an
increase in red tide frequency along the San
Diego coast moving towards 2050.




If you are willing to assume that the direction o
change in the ROM is the same as near-shore
environment...
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...our best prediction is that there will be an
increase in red tide frequency along the San
Diego coast moving towards 2050.




Application to hypoxia in Lake
Geneva.

Overcoming challenge of interpretability; hybrid approaches to leverage
first-principles understanding.

Damien Bouffard, Victor Frossard, Robert Schwefel,
Johnb Mellack, George Sugihara.

Tom Lorimer.




Hybrid Approaches to Hypoxia: Lake
Geneva Study

Current reoligotorphication foodweb structure

Prior eutrophication foodweb structure
(modern baseline)

(historical baseline)

» Fixed, parameterized rates really
most immediately appropriate to
capture a fixed community / food-
web.

» These are changing! Non-stationary
world.

» Low-dimensional nonlinear
regression (aka simple supervised
machine learning) can represent
changing interactions between
variables (rates).




Depth [m]

Parametric modeling of stratification has shown
predictive success, but extending the framework
water-quality has been harder.
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https://simstrat.eawag.ch/LakeGeneva
https://doi.org/10.1002/2016WR019194

Parametric description faces a trade-off between ov
simplification and over-fitting that presents a major
for management.

Only included effect of Observed rates of oxygen d
phosphorous indirectly through vary substantially in and bet
observed chlorophyll years
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https://doi.org/10.1002/2016WR019194

One-step forecasts of DOs show potentic
capture emergent dynamics of BGC with

Empirical Dynamics
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rEDM package available at
(github.com/SugiharalLab/rEDM)
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forecast substantially better than
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Incorporating biogeochemical
variables leads to improved
forecasts



http://github.com/SugiharaLab/rEDM

Interpretability: extracting rates and
interaction coefficients.
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Deyle et al. 2016 Proc Roy Soc B



Interpretability: extracting rates and
interaction coefficients.
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Hybrid Approaches to Hypoxia: Lake
Geneva Study

(B) Median May-Oct Effect
of CHL on DO,

» Fixed, parameterized rates really Rates
most immediately appropriate to

0.1+

capture a fixed community / food- z
web. ® 00

» These are changing! Non-stationary (A)  Mediag/ Annual Effect §
world. of TP/, on CHL

o
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» Low-dimensional nonlinear
regression (aka simple supervised
machine learning) can represent
changing interactions between
variables.

Increasing negative
impact of CHL at
lower phosphorous

dCHL/ATP,,
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First-princples +
empirical

2 box model but instead of
parameterized equations for
ecosystem processes (e.g.
primary production and
respiration), use empirical
dynamic models.
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Closing Thoughts




but
practical considerations can lead to
strong preferences.

» Kernel Regression: » Random Forest
» Have to “carry the » Relatively lightweight
data around” to use specification, can just
the empirical model. carry around a sparse

matrix and a few other
things.



but
underlying assumptions can limit
interpretability of some versus others.

» Kernel Regression: » Random Forest
» Dynamic interactions » Dynamic interactions
can be read nearly are 0 almost
straight out of the everywhere and
model. undefined on a

sparse, finite set.




but
accessibility remains a major challenge
that can override any other consideration.

» Kernel Regression: » Gaussian Processes:
» Can characterize » Can use a fully Bayesian
forecast uncertainty in framework for
a frequentist uncertainty propagation.
» Full version controlled, » Currently available
documented R, Python, packa%es poorly matched
and C++ packages (Hao to ecological forecasting

Ye, Joseph Park) with use-cases.
training materials.

github.com/Sugiharalab



http://github.com/SugiharaLab/rEDM

Thank you!




Capabilities
» Sidestep structural uncertainty.
» Robust to unobserved variables.

» Practically cope with shifts in
ecology, rather than trying to
approximate systems as fixed and
unchanging.

» Can be part of forecasting non-
stationary and non-equilibrium
futures.

Challenges

» Interoperability of modeling
frameworks.

» Both the parametric hydrodynamic
model and our “EDM” package
went through major version turn-
over.

» Using as “black boxes” can obscure
bias.

» Knobs & Tuning can be hiding (what
data do you put in?).



