

Large scale forcing
of the Arctic sea level
seasonality
and implications for
slope currents

Francesca Doglioni^{1,2},

Robert Ricker¹ (now at NORCE, Bergen)
Benjamin Rabe¹,
Alexander Barth³,
Charles Troupin³,
Claudia Wekerle¹,
Sergey Danilov¹,
Qiang Wang¹,
Torsten Kanzow^{1,2}

Outline:

BACKGROUND

Measurements of ocean currents variability along the the Arctic continental slopes.

METHODS / RESULTS

What **temporal and spatial scales** is it possible to observe with a single-mission, gridded product (SAGA dataset)?

RESULTS / DISCUSSION

Satellite data as a **link** between local observations and forcing of **large** scale variability.

BACKGROUND: SLOPE CURRENTS IN THE ARCTIC OCEAN

System of **topographically guided**, **narrow currents** exchanges heat and freshwater between the Arctic Ocean and Sub-Arctic Seas

Recent synthesis from moored observations

Pnyushkov et al. (2015): Structure and variability of the boundary current in the Eurasian Basin of the Arctic Ocean

Is **satellite altimetry** a viable tool to get insight into the **slope currents variability** in the Arctic, and help understand its drivers?

Outline:

BACKGROUND

Measurements of ocean currents variability along the the Arctic continental slopes.

METHODS / RESULTS

What **temporal and spatial scales** is possible to observe with a single-mission, gridded product (SAGA dataset)?

RESULTS / DISCUSSION

Satellite data as a **link** between local observations and forcing of **large** scale variability.

METHOD / RESULTS: ARCTIC MAPS OF SEA SURFACE HEIGHT (SSH) AND GEOSTROPHIC VELOCITY

...among other challenges of satellite altimetry in the Arctic:

- Very few missions cover high latitudes of the central Arctic (Cryosat-2, ICEsat 1-2)
- observations in ice-covered regions require dedicated processing
- Only few homogenous, gridded datasets

SAGA

Sea level
Anomaly and
Geostrophic velocity of the
Arctic ocean

Sea surface height (SSH) and geostrophic velocity

- based on Cryosat-2 mission, up to 88°N
- Pan-Arctic, including ice-covered regions as reprocessed by AWI (Hendricks et al. 2021)
- monthly maps (2011-2020)

dataset: Doglioni et al (uploaded to PANGAEA): https://doi.pangaea.de/10.1594/PANGAEA.931869

associated manuscript: Doglioni et al. (subm. 2022, in review at ESSDD): https://doi.org/10.5194/essd-2022-111

RESULTS: COMPARISON TO SURFACE VELOCITY FROM MOORING ARRAYS

Outline:

BACKGROUND

Measurements of ocean currents variability along the the Arctic continental slopes.

METHODS / RESULTS

What **temporal and spatial scales** is possible to observe with a single-mission, gridded product (SAGA dataset)?

RESULTS / DISCUSSION

Satellite data as a **link** between local observations and forcing of **large** scale variability.

RESULTS: LARGE SCALE SEASONAL ACCELERATION OF BOUNDARY CURRENTS

geostrophic velocity

SEASONAL SPEED ANOMALY: October to December

A large scale **acceleration in fall/winter** appears in the geostrophic velocity along the continental slopes in the Eurasian Arctic.

This result is consistent with several mooring inferred results, integrating them into a basin-wide perspective

METHODS: SSH VARIABILITY FROM ALTIMETRY FIELDS AND MODEL OUTPUT

What is the nature of SSH variability that contributes to slope currents variability at seasonal time scales?

We used monthly maps, over the period 2011-2020, from:

SATELLITE DATA

SAGA

MODEL DATA

FESOM

Finite

Elements

Sea ice-

Ocean

Model

FESOM 1.4, resolution of 4.5 km in the Arctic Ocean, sea ice-ocean coupling.

Using monthly mean maps from an historical run forced by atmospheric reanalysis data of JRA55-do v.1.3 (Tsujino et al., 2018).

^ Largest differences in the shelf seas, sharp divide at the Eurasian shelf break

Large-scale behaviour is attributable to variations in ocean mass. \rightarrow

DISCUSSION: DRIVERS OF OCEAN MASS SEASONALITY
(1) Can the seasonal variability of ocean mass on the shelf seas be explained by Ekman transport across the shelf break?
(2) Why are these large oscillations confined to the shelf seas?

DISCUSSION: DRIVERS OF OCEAN MASS SEASONALITY
(1) Can the seasonal variability of ocean mass on the shelf seas be explained by Ekman transport across the shelf break?
(2) Why are these large oscillations confined to the shelf seas?

Discussion (1): Ekman transport(model)

Ekman transport:

$$\mathbf{U} = (U, V) = \frac{1}{\rho_0 f} \left(\tau_o^y, -\tau_o^x \right)$$

where ocean surface stress:

$$\tau_o = A \, \tau_{io} + (1-A) \, \tau_{ao}$$

Climatologies (model)

Time-integrated
Ekman transport
(equivalent height)

 η_M (shelf seas average)

The η_M seasonality is **in phase** with the **time-integrated Ekman transport** across the shelf break, into a "shelf seas box".

What balances the Ekman transport of mass onto the shelves? ... to be continued...

DISCUSSION: DRIVERS OF OCEAN MASS SEASONALITY
(1) Can the seasonal variability of ocean mass on the shelf seas be explained by Ekman transport across the shelf break?
(2) Why are these large oscillations confined to the shelf seas?

Discussion (2): eastwards propagating mass anomaly?

How can we explain the sharp divide at the shelf edge?

← Fukumori et al. (2015):

wind forcing applied for 1 h anomalies travel along shelf break

What happens under persistent anomalous seasonal winds?

... to be continued..

Discussion (2): eastwards propagating mass anomaly?

Wind pattern: ascending minus descending phase

Similar to AO>0 wind pattern (experiment done!)

Summary:

BACKGROUND

Status of satellite **altimetry** for oceanography in the **Arctic**: what **challenges** are still to be overcome?

METHODS / RESULTS

What **temporal and spatial scales** is possible to observe with a single-mission, gridded product (SAGA dataset)?

SEASONAL AND LARGER TIME SCALES, BOUNDARY CURRENTS

RESULTS / DISCUSSION

Satellite data as a **link** between local observations and forcing of **large** scale variability.

SEASONAL MASS OSCILLATIONS ON SHELVES, EKMAN TRANSPORT?