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What is Dynamical Downscaling?

Similar to General Circulation Models: solving equations of thermo- and fluid
dynamics but in a smaller, higher resolution region
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Why Downscale?

Allows for resolution of LMR-critical ocean features and the impact of
local effects on large scale trends
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unprecedented ocean states
(vs. observation-based statistical
downscaling which is defined by
historical conditions)
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Exciting Dynamical Downscaling Capabilities

Atmospheric Coupling

wind velocity M SST
humidity sea ice thickness
precipitation C-Couplerz sea ice concentration
air temperature albedo

—
heat flux (short/long) N eriading snow depth
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Biogeochemical Models

" Deposition and Air-Sea Exchanges (Table 1)
p River Inputs

Higher trophic levels

‘Burial and sediment storage (Table 1)

Nitrogen Iron Lithogenicdust =3 All other
fluxes
Carbon Silicon =3 Fluxes to DOM

Y ; Remineralization,
Phosphorus Calcite, Aragonite S i : /

COBALT, 33 tracers. Stock et al., 2019




Reality: Computational Costs Necessitate Tradeoffs

Domain Size & Resolution

Model Complexity & Comprehensiveness: Inclusion of
Biogeochemical, Hydrological, Ice, Ecosystem, Wave Models

Boundaries & Forcing: One-way Nested vs. Coupled
Simulation Duration: Time Slice vs. Transient Simulations

Ensemble Size: Number of Simulations to Represent Uncertainty



Facilitating LMR Management Decisions for an Uncertain Future

ﬁ@ Synthesis Paper Inspired by 2015 WKSICCME Workshop 0
“Modeling Effects of Climate Change on Fish and Fisheries” ot

Recommendations for climate change ocean downscaling studies given
limited computational resources

Identify LMR-Essential Spatial and
Temporal Scales, Features and
Environmental Conditions
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Progression of Climate Change, Ocean Downscaling Studies
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® Increase in the number of ocean downscaling
climate change studies (n values)

® |ncrease in horizontal resolution

® More ocean downscaling studies including BGC
® Increase in number of ensemble members

Many of these studies are more “proof of concept” in nature
and not necessarily intended for operational forecasting

Drenkard et al., 2021



Challenge of Adequately Representing Uncertainty

In order to provide actionable forecasts, we need to represent the range and
likelihood of possible conditions/futures.
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40 Future Ensemble Size

Many of the reviewed climate change ocean
downscaling studies consider fewer than 5
ensemble members

Number of Studies

5 15 25 35 45 65
Drenkard et al., 2021

Strategic ensemble design requires consideration of the various forms of uncertainty; it is
likely intractable to dynamically downscale ALL potential sources of uncertainty



Uncertainty Varies by Time Horizon

Global Decadal Mean Surface Air Temperature
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Uncertainty Varies by Field

California Current Large Marine Ecosystem

Global Decadal Mean Surface Air Temperature Sea Surface Temperature Change
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Uncertainty Varies by Field

California Current Large Marine Ecosystem

Global Decadal Mean Surface Air Temperature Primary Productivity Change
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Downscale Across Range of Uncertainty

Toss “bad” GCMs; span variable-dependent uncertainty envelope

A Precipitation (mm)
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Uncertainty Can Also Vary by Location
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Challenge of Adequately Representing Uncertainty

Somali Coast o
Sources of Near-term Current System Internal variability represents a larger

(2016-2035) portion of the uncertainty for shorter-
Uncertainty term predictions. This further

Scenario emphasizes the need for generating
larger ensembles

Model =%

Internal But dynamical downscaling is

computationally expensive; employing
hybrid/complementary methods could

Frélicher et al., 2016 provide a solution



Hybrid Dynamical-Statistical Approaches for Sampling Uncertainty Space
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Hybrid Dynamical-Statistical Approaches for Sampling Uncertainty Space

Change in Bering Sea Bottom Temperature
Hermann et al. (2019):

e I|dentified dominant modes of ocean
responses to changes in atmospheric
conditions using EOFs and small
ensemble of dynamically downscaled
projections.

e Projected larger ensemble of GCMs
onto these modes, generating additional
regional ensemble members and more
efficiently spanning a larger range of
scenario and model uncertainty.




Dynamical downscaling is a powerful tool

To go beyond “proof of concept” applications and provide reliable
forecasts, we need to sample the range and likelihood of possible
conditions. This requires larger ensembles than are typically run to date.

We need to be strategic in using computational resources and consider
complementary techniques (e.g., Statistical, Machine Learning) to fill
probability space.
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