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What is Dynamical Downscaling?

Similar to General Circulation Models: solving equations of thermo- and fluid 
dynamics but in a smaller, higher resolution region



What is Dynamical Downscaling?

Northeast Pacific Domain

Region: NEP
Model: MOM6
Run Time: 40 years
Atmos. Forcing: ERA5
Boundaries: SODA 3.12.2
Configuration: one-way nested; 

physics + ice + BGC18oN
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Similar to General Circulation Models: solving equations of thermo- and fluid 
dynamics but in a smaller, higher resolution region
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Why Downscale?

Allows for resolution of LMR-critical ocean features and the impact of 
local effects on large scale trends

Dynamical downscaling permits 
mechanistic simulation of 

unprecedented ocean states 
(vs. observation-based statistical 
downscaling which is defined by 

historical conditions)

Liu et al., 2015

Sun et al., 2012



Exciting Dynamical Downscaling Capabilities

Khangaonkar et al., 2019

Unstructured/ Stretched Grids

COBALT, 33 tracers. Stock et al., 2019

Biogeochemical ModelsAtmospheric Coupling 

Danilov et al., 2013

Ren et al., 2021



Reality: Computational Costs Necessitate Tradeoffs

Domain Size & Resolution
Model Complexity & Comprehensiveness: Inclusion of 
Biogeochemical, Hydrological, Ice, Ecosystem, Wave Models 

Boundaries & Forcing: One-way Nested vs. Coupled

Simulation Duration: Time Slice vs. Transient Simulations

Ensemble Size: Number of Simulations to Represent Uncertainty



Facilitating LMR Management Decisions for an Uncertain Future

Synthesis Paper Inspired by 2015 WKSICCME Workshop
“Modeling Effects of Climate Change on Fish and Fisheries”

Recommendations for climate change ocean downscaling studies given 
limited computational resources



Progression of Climate Change, Ocean Downscaling Studies

● Increase in the number of ocean downscaling 
climate change studies (n values)

● Increase in horizontal resolution 

● More ocean downscaling studies including BGC
● Increase in number of ensemble members 

Drenkard et al., 2021

n=4 n=6 n=9 n=54 n=43

Many of these studies are more “proof of concept” in nature 
and not necessarily intended for operational forecasting



Challenge of Adequately Representing Uncertainty  

In order to provide actionable forecasts, we need to represent the range and 
likelihood of possible conditions/futures. 

N
um

be
r o

f S
tu

di
es

Drenkard et al., 2021

Many of the reviewed climate change ocean 
downscaling studies consider fewer than 5 

ensemble members

Strategic ensemble design requires consideration of the various forms of uncertainty; it is 
likely intractable to dynamically downscale ALL potential sources of uncertainty



Hawkins & Sutton 2009
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Scenario Uncertainty

Hawkins & Sutton 2009
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Uncertainty Varies by Field

Mike Jacox

Model Uncertainty

Internal Variability

Envelope of Uncertainty
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Scenario Uncertainty

Hawkins & Sutton 2009

Scenario

Model

Internal

Mike Jacox

Model Uncertainty

Internal Variability
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Muhling et al., 2017

CMIP5 GCMS

Toss “bad” GCMs; span variable-dependent uncertainty envelope

Downscale Across Range of Uncertainty



Frölicher et al., 2016

Equatorial 
Atlantic Biome

Somali Coast 
Current System

North Atlantic 
Ice Biome

Humboldt 
Current System

Uncertainty Can Also Vary by Location

Internal

Model

Scenario

Sources of Near-term 
(2016-2035)
Uncertainty



Somali Coast 
Current System

Frölicher et al., 2016
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Internal variability represents a larger 
portion of the uncertainty for shorter-

term predictions. This further 
emphasizes the need for generating 

larger ensembles

Challenge of Adequately Representing Uncertainty  

But dynamical downscaling is 
computationally expensive; employing 
hybrid/complementary methods could 

provide a solution



Hybrid Dynamical-Statistical Approaches for Sampling Uncertainty Space

Muhling et al. (2018):

● Chesapeake Bay surface 
temperature and salinity 
predicted using statistical 
downscaling (i.e., model 
trees) linked to mechanistic 
water balance model. 



Hybrid Dynamical-Statistical Approaches for Sampling Uncertainty Space

Hermann et al. (2019):

● Identified dominant modes of ocean 
responses to changes in atmospheric 
conditions using EOFs and small 
ensemble of dynamically downscaled 
projections. 

● Projected larger ensemble of GCMs 
onto these modes, generating additional 
regional ensemble members and more 
efficiently spanning a larger range of 
scenario and model uncertainty.

Change in Bering Sea Bottom Temperature



Dynamical downscaling is a powerful tool

To go beyond “proof of concept” applications and provide reliable 
forecasts, we need to sample the range and likelihood of possible 

conditions. This requires larger ensembles than are typically run to date. 

We need to be strategic in using computational resources and consider 
complementary techniques (e.g., Statistical, Machine Learning) to fill 

probability space. 

Summary


