From CLIMODE to OOI: Observational Challenges and Some Solutions for the Gulf Stream Region

James Edson* Senior Scientist Applied Ocean Physics & Engineering Woods Hole Oceanographic Institution PI of the OOI Program Management Office

* With a lot of help from numerous colleagues

2022 Whither the Gulf Stream Workshop 15 June 2022

Research supported by grants from the ONR, NSF, NOAA and NASA

Gulf Stream Research

- An amazing natural laboratory for air-sea interaction and coupled boundary layer research.
- Many of the research opportunities present observational challenges:
 - Strong currents and current shear
 - Strong winds from coastal storms (e.g., Nor'easterns)
 - Large though ultimately fetch limited waves
 - Air-mass advection (e.g., cold air outbreaks)
- We have met many of these observational challenges in recent field programs (e.g., CLIMODE, OOI, & PEACH)

Gulf Stream Research

CLIMODE: CLIVAR Mode Water Dynamic Experiment

Project to study the dynamics of 18° mode water formation at the Gulf Stream northern wall. Marshall et al. 2009, BAMS

OOI-PA: Ocean Observatories Initiative - Pioneer Array Array to investigate cross-shelf exchange nutrients, pollutants, and other properties are between the coastal shelf and the deep ocean. Gawarkiewicz & Plueddemann, 2020, JPO

PEACH: Processes driving Exchange At Cape Hatteras Better understanding of seawater exchanges over region where Gulf Stream transitions from boundary trapped to a free jet. Seim et al. 2022, Oceanography

CLIMODE Deployments and Cruises

- November 2005: Mooring & Profiler Deployment Cruise
- January 18-30, 2006: Pilot Experiment, ASIS/FILIS Deployment
- October 2006: Mooring Turnaround Cruise
- February-March 2007: 6week Main Experiment, ASIS/FILIS Deployments, Microstructure, Surveys.
- November 2007: Mooring Recovery Cruise

CLIMODE Deployments and Cruises

- November 2005: Mooring & Profiler Deployment Cruise
- January 18-30, 2006: Pilot Experiment, ASIS/FILIS Deployment
- October 2006: Mooring Turnaround Cruise
- February-March 2007: 6week Main Experiment, ASIS/FILIS Deployments, Microstructure, Surveys.
- February 2007: Mooring Recovery Cruise

The Gulf Stream

- Cold air outbreaks drive extremely active convection over the region.
- The net winter heat loss in this region is 400 W/m².

Lagrangian Assets

Gulf Stream Transects

2007 Mean Meteorology

2007 Bulk Fluxes

Relative Velocity

$$C_{DN}(z \mid z_{o}) = \frac{-\overline{uw}}{\Delta U_{N}G} = \left(\frac{\kappa}{\ln(z \mid z_{o})}\right)^{2}$$

2005-2007 Buoy Flux Estimates

COARE 3.5

Edson, James B., and Coauthors, 2013: On the Exchange of Momentum over the Open Ocean. *J. Phys. Oceanogr.*, **43**, 1589–1610.

Wind Speed & Surface Stress Across SST Fronts

It is commonly observed that surface winds are enhanced over warmer water and suppressed over cooler water as air is advected over SST fronts. A number of different mechanisms have been suggested to explain these observations as summarized in Small et al. (2008):

- Surface layer adjustment (SLA) of shear because of changing atmospheric stratification explained by MOS.
- Changes in wind stress related to changes in the relative wind due to large surface currents often associated with fronts (e.g., the Gulf Stream).
- The enhancement of vertical mixing because of cool air advection over warmer water that mixes down larger momentum from aloft on the warm side of the front.
- The horizontal pressure and boundary layer height gradients set up by the adjustment of air temperature and humidity to the underlying SST.

Wind Speed & Surface Stress Across SST Fronts

It is commonly observed that surface winds are enhanced over warmer water and suppressed over cooler water as air is advected over SST fronts. A number of different mechanisms have been suggested to explain these observations as summarized in Small et al. (2008):

- Surface layer adjustment (SLA) of shear because of changing atmospheric stratification explained by MOS.
- Changes in wind stress related to changes in the relative wind due to large surface currents often associated with fronts (e.g., the Gulf Stream).
- The enhancement of vertical mixing because of cool air advection over warmer water that mixes down larger momentum from aloft on the warm side of the front.
- The horizontal pressure and boundary layer height gradients set up by the adjustment of air temperature and humidity to the underlying SST.

Gulf Stream Soundings– Pilot Experiment Dissertation research of Hanyuan Liu

Gulf Stream Soundings– Main Experiment Dissertation research of Hanyuan Liu

CLIMODE Knorr Ship Track with SST on Mar.21

CLIMODE Soundings & Surface Layer Response Dissertation research of Hanyuan Liu

Other Observational Assets

eXpendible Spar Buoy (X-Spar)

- Real-time direct covariance platform for stress and buoyancy fluxes.
- Battery pack could run DCFS for 14 months
- It could run a DCFS/IRGA for ~10 months to measure latent and sensible heat flux

Through the Eye of Epsilon

An Ocean Test Bed

Woods Hole Oceanographic Institution

Proposed Barge Mast and Sensor Orientation

Vertical Structure: Three Viable Designs

Fixed Tower

Concrete-base Tower

Jack-up Tower

Super Sites

- An ocean laboratory to gather data essential for marine weather and climate forecasts.
- Super Sites have become feasible through technology developed by the offshore wind industry.

Coastal Pioneer Array – Southern Mid-Atlantic Bight

* * * * * * * * * * * * * * * * *

Recent Advances in Marine Platforms and Sensors for Air-Sea Interaction Studies

CLIMODE Year long

OOI Real-time Fluxes

SPURS Latent Heat Flux

X-Spar Long duration Real-time Fluxes

Lidar Buoy Long duration Profiles

Gliders Long duration profiles

Remote Sensing Continuous Profiling

UAV Profiling & Missions

Saildrone Long duration Mobile

Wave Glider Long duration Mobile

Gulf Stream Research Questions?

- An amazing natural laboratory for air-sea interaction and coupled boundary layer research.
- Many of the research opportunities present observational challenges:
 - Strong currents and current shear
 - Strong winds from coastal storms (e.g., Nor'easterns)
 - Large though ultimately fetch limited waves
 - Air-mass advection (e.g., cold air outbreaks)
- We have met many of these observational challenges in recent field programs (e.g., CLIMODE, PEACH)

Remote Soundings-Main Experiment

Extreme Conditions

Maximum wind speeds exceeded 30 m/s in near hurricane conditions.

ASIS Destroyed by Rogue Wave

Stress vs Wind Speed

2007 ASIS Flux Estimates

