East coast/G. Mexico/Caribbean Islands - In person

Major gaps:
1. Data availability in coastal ocean
 - A lot of data available within individual groups
 - Need for standardized (FAIR) data; hard money support needed to coordinate databases and help observational groups contribute to them
1. Gulf of Maine
 - A lot of the data is shore-aliased (different problem!)
1. What is the bottleneck?
 - Shelf/nearshore disconnect
 - Need for real-time observations for short-term forecast

Solutions:
1. Hard money!
2. USGS good example for data availability
3. Higher level coordination of regional associations
1. **What are the major gaps in our ability to predict physics/BGC/ecology in this region at the time scales of interest?**
 a. Better understanding the dominant climate modes, and climate signals may not be strong compared to the west coast.
 b. Better simulating the seasonal-to-interannual variabilities of the Gulf Stream, e.g.,
 i. Meridional shift of its main axis;
 ii. Warm-core rings activities in the slope region;
 iii. Meandering intensity

1. **What program would you design to fill these gaps?**
 a. Higher-resolution BGC reanalysis models
 b. Statistical modeling techniques
 c. Using ML techniques to investigate currently available data and reanalysis outputs
 d. Quantitative and qualitative
West coast/Pacif. Islands - In person

- West coast is “easy” - nice to have ENSO as the main driver of predictability.
 - ENSO diversity drives different teleconnections that can impact skill differently.
 - ENSO teleconnections are not always consistent, need to use large model ensembles to understand impact uncertainty.

- Need a better understanding of eddy-ecological interactions (physics, timescales, etc).
 - Eddy statistics vs individual eddy impacts on ecosystem, depends on the scale of interest.
 - Other flavors of eddies are also important, not just closed rings (filaments, bulk EKE).

- Difficult to simulate interactions across trophic levels.
 - Can’t advance models, strongly limited by our ability to observe those quantities. Hard to advance and/or validate the models with limited observations.

- Unclear how modeling tools translate to tangible actions.
 - General mistrust of models among stakeholders. In some cases it’s actually illegal to use model output to make decisions (west coast HABs).
 - Build trust by repeatedly showing stakeholders that it works (in real time), as opposed to attempting to communicate overall skill or forecast uncertainty.
 - When developing operational tools, need to partner with stakeholders in tandem.
1. What are the major gaps in our ability to predict physics/BGC/ecology in this region at the time scales of interest?
 ● Focused process studies linking key physical mechanisms to ecological responses
 ● Need for observations of rate processes (birth, death, growth rate) with interactive variables
 ● Need for greater constraint on respiration, calcification, and dissolution rates
 ● Need for spatially-resolved time series with subsurface resolution
 ● Better integration between model development and observations
 ● Better resolution of upstream transport variation and its effects on the coastal ocean
 ○ E.g., influence of circulation off C. America on N. American coastal waters)

1. What program would you design to fill these gaps?
 ● Better linkage between (and perhaps evaluation of) disparate observation programs along the US West Coast, including:
 ○ Ocean informatics
 ○ Measurement collection
 ○ Standardized best practices across collection and data processing
 ● Better integration of shipboard with autonomous instrumentation for finer spatio-temporal resolution
 ● Opportunity for expanding collaborations / integrating efforts with colleagues in C. and S. America, and more broadly
 ○ E.g., Gap in transport observations from C. America to N. America
Arctic/Bering Sea - Hybrid

- What is the timescale to look for?
 - Seasonal to annual important to many stakeholders
- Eastern Bering Sea cold pool
 - Global model skill is an issue - lack of skill for winter winds which advect ice
- Sea ice concentration and thickness
 - Observations of volume were important
 - Continue and improve observations
 - Cryosat2 and Icesat2 for SI thickness
- Sea ice phenology
 - Impacts BGC and ecology
 - Sustained observations in N Bering
- River input - volume and BGC (nutrients and carbonate system)
 - Data availability issue - some new reanalysis products are helping
 - GLOFAS & JRA55-DO; GlobalNews
 - Large variability in different rivers systems
- What program to design?
 - EcoFOCI and DBO have been making observations
 - More funding for international collaboration in Arctic (obs and models)
 - Arctic GOOS Regional Alliance?
Session 2: Applications
Fisheries - In person

Major barriers:
- Lack of understanding mechanistic underpinnings
- Inertia of fisheries management process
- Fisheries data lack indices - no point of comparison, no data to validate your model

Suggestions:
- Stress the reforecast approach to fisheries
- Understanding current scientific approach in order to make improvements on current weaknesses
- Think about ways that ecological information can be used (other than just stock assessments)
- Proactive vs reactive (ecological forecasts could be useful for understanding presence/avoidance)
 - In season adaptive management approaches
Fisheries - Virtual

Barriers for management-relevant applications:
- Accuracy/uncertainty of model inputs cascades into forecasts

Knowledge of relevant process / Suitable methodological approaches:
- Lack of first-principles approach to ecology can result in the use of correlative models
 - May not forecast well when outside training data
 - May work well when they can exploit persistence
- Consider evaluating other “discipline-specific” approaches that can be applied to forecasting for fisheries applications

Data
- Better understanding of zooplankton and additional zooplankton data can help improve models
 - Prey (zooplankton / forage fish) often missing from, or poorly constrained in, habitat/abundance modeling
- Make efforts to merge data sets from different institutions/agencies to create larger more robust data sets
- Consider emerging approaches (machine learning techniques, AI) when designing or redesigning data collection efforts (especially large-scale or long-term efforts)
Harmful Algal Blooms (HABs) - hybrid

Major barriers to prediction for management-relevant applications

- Inherent paucity of species-level predictability (i.e., chaotic behavior at species level; parallel to chaotic atmospheric behavior)
- Data is sparse, but some cause for optimism:
 - Hyperspectral (PACE) and hyperspectral/geostationary satellites (GLIMMR)
 - Unmanned aerial vehicles to provide synoptic coverage of nearshore waters (the inner km)
 - Advances in in-situ observing systems (ESP, gliders) could be deployed at scale, though cost is still a barrier.
 - Expanded eDNA activities
- Mechanistic understanding of HABs is often limited
 - Empirical models are often based on emergent correlative relationships with what you have rather than careful mechanistic choices - cautions against long time horizon applications.
 - Better integration of HAB and hydrographic/BGC sampling could help improve.
 - The need to understand propagation through foodweb and translation to toxicity compounds mechanistic challenges.
- Challenge of providing decision-relevant data given the high threshold for action
 - Useful for optimizing monitoring effort to reduce risks?
Breakout 2. Coastal Water Quality

OA - long-term forecasts
- Characterization of indirect pathways
- Long-term time series
- How to motivate stakeholders to worry about long timescales (e.g., relate to number of generations of some critter)

OA - short-term forecasts
- Real-time pCO2 data; good new alkalinity measurements
- Citizen science, but require more care than physical variables

O₂ - long-term forecasts
- Improved terrestrial inputs from watershed models; earth system models?
- Ocean boundary conditions - need more shelf data
- Little information/data on benthic fluxes, shallow coastal environments; how these will change with warming

O₂ - short term forecasts
- Trade-off between knowing things now (even if for the wrong reasons) and getting the reasons right for better understanding
- Building models that are versatile because stakeholders may have new focus/issues, or current problems may be solved and no longer need to rely on forecast
Coastal water quality (e.g., hypoxia, acidification) - virtual

Question: What are the major barriers to prediction for management-relevant applications? Inherent lack of predictability? Knowledge of relevant processes? Data? Suitable methodological approaches?

- Lack of high-resolution (1 km) biogeochemical models
- Paucity of consistent (space/time) coastal data to assimilate into (and validate) models
 - E.g., Arctic - shelf-wide ocean acidification, nutrients
- Inherent lack of predictability at timescales < interannual, reiterating need for finer spatio-temporal resolution and more data
 - E.g., Sea ice in the Arctic, wherein little skill beyond persistence before sea ice retreat
- Need for communication and engagement with stakeholders for product relevancy
- Disparate methodological approaches
 - Trade off between complexity, application need, what data is available
- Turf wars == opposes open science and progress for societal benefit
What are the major barriers to prediction for management-relevant applications?
- Undersampling (especially subsurface) (physical, bgc features)
- Lack of rapidly available data for quick assimilation
- Lack of basic mechanistic understanding of bgc processes and organisms (physical tolerances, bgc processes)

Inherent lack of predictability?
- Relevant time scales are hard to constrain
- Nonlinear behavior of physics and ecosystems, Nonlinear biological responses even if physical forcing is linear!
- 2nd and 3rd order interactions between drivers of compound events are poorly understood (e.g. land-ocean interactions, multivariable interactions, precipitation and hypoxia)

Knowledge of relevant processes?
- Physical: Along shore upwelling, favorable winds, transient storms causing mixing, coastally trapped waves
- bgc process (hypoxia, oa)
- Organismal generation time (sets time scale for relevant phenomenon)

Data?
- Satellite ocean color, SAR, SSH, SSS, SST, etc., and upcoming SWOT, PACE, NISAR, etc. High-res ocean reanalyses (e.g., GLORYS). Future observations of surface fluxes, winds and currents (WaCM), and Mixed layer depth.

Suitable methodological approaches?
- Multistressor experiments
- Large ensembles could be used more liberally to get more degrees of freedom.
- Linear Inverse Models (LIMS) can tease out key processes. Can only offer you variables that you feed it.
- Dynamical system might be better able to explain extreme events bc they produce dynamically consistent results.