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Some Regional Reanalysis
Products

These physical products
use ROMS 4D-Var



ROMS 4D-Var
• Regional Ocean Modeling 

System (ROMS)
• 4-Dimensional Variational 

Assimilation
• Linearized model dynamics 

connect observations at 
different times
• Data can be continuous in 

time
• Long cycles (days-week)

( ) ( ) ( ) ( )1 1( ) ( )T TH HJ - -= - - + - -b b b bBz z yz Ry z zz
Prior Prior

error cov.
Obs

error cov.
Obs Obs

operator

Minimize:



One example cycle showing SST
Control variables are model initial conditions

• Though SST is shown, all variables are adjusted in ways consistent 
with background and observation error covariances

Prior estimate Observations Posterior estimate



UCSC ROMS 4D-Var Historical Reanalyses
1980-2010 (ERA) and 1999-2012 (COAMPS) and 
near real-time system (2011-present)
• 1/10o CCS ROMS configuration
• Reanalyses 8-day assimilation cycles
• NRT: 4-day assimilation cycles
• Assimilates SST, SSH, SCHL, glider T/S, Argo T/S, HF RADAR 

velocities
• Model output available on a TDS
• Calendar searchable with figures
• Focus on nowcast and potentially short-term prediction (~ 1 

week).
• Why do this?

• Marine resource management (HABS, Fisheries, Sanctuaries)
• Industry: aquaculture, shipping
• CGSAR (in principle)



4. predicted habitat suitability

1. Species tracking 
and observer data 5. Integrated fishing suitability

2. Environmental data from ocean 
models Brodie et al. 2018

Welch et al 2019

3. Species distribution 
models

One motivation for state estimation



Physical Data Available for regional NRT assimilation

https://www.cencoos.org/observations/satellites/

https://www.nesdis.noaa.gov/jason-3/mission.html
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Table 1

A summary of the observation types, observing platforms, data sources, the nominal measurement errors, and the period

covered.

Observation Type Observing platform Source Instrument error Period covered

SSH Altimeter Aviso, 1 day average 0.04 m 1993–2012

SST AVHRR/ Pathfinder NOAA Coast watch 0.6 °C 1981–2012

SST AMSR-E NOAA Coast watch 0.7 °C 2002–2010

SST MODIS-Terra NASA JPL 0.3 °C 2000–2012

Hydrographic data Various UK Met Office 0.5 °C for T 0.1 for S 1950–2012

Fig. 2. A time series of log10 of the total number of super observations available from EN3 and each satellite observing platform within the ROMS CCS model domain during each

month of the year during the period spanned by WCRA31. Dark blue: In situ observations from EN3; Red: SST from AVHRR/PathFinder; Black: SST from AMSR-E; Green: MODIS-

Terra; Magenta: SSH from AVISO; Light blue: observations rejected. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

error variance in Table 1. The super observations procedure affects
nearly every observation since satellite observations are averaged in
the horizontal and in situ observations in the vertical to match the
model resolution.

Fig. 2 shows a time series of log10 of the total number of super
observations from each observing platform that fall within the ROMS
CCS model domain during each month of the year spanning the full
period of WCRA31. Fig. 2 indicates that the bulk of the observations
available for assimilation are in the form of satellite measurements
of SST. As indicated in Table 1, SST observations are available from
several different platforms. The along track data from each platform
were used, and when multiple platforms are concurrently available,
the super observations from each platform were combined via the
super observation process. Only the number of super observations
for each individual platform are shown in Fig. 2. The individual su-
per observations from each platform were combined, if necessary, by
computing a standard minimum variance estimate using the nomi-
nal errors in Table 1 to compute the weights. While it can be argued
that the formation of super observations effectively reduces the un-
certainty in the assimilated data, no effort was made here to reduce
the error entries in R associated with super observations.

The SSH data used here were from the multi-mission 1/4° global
SSH fields created by the Archiving Validation and Interpretation
of Satellite Oceanographic data center (AVISO), specifically their
Data Unification and Altimeter Combination System (DUACS) ver-
sion DT-2010. These SSH data are produced by objective mapping of
multi-mission altimeter data (Dibarboure et al., 2011), and the data
assimilated into the model was a 1 day gridded composite. Prior to
assimilating the data, the mean dynamic topography of the AVISO
data averaged over the ROMS CCS domain was corrected to match
that of the model. A steric height correction was also applied using
the data of Willis et al. (2004). Rather than using along-track data,
gridded data were used because the version of 4D-Var employed to
compute the analyses does not allow for prior errors or observation
errors that are correlated in time. As a result, information from indi-
vidual along track observations can be quickly lost due to geostrophic
adjustment and becomes ineffective for constraining the model un-
less it persists over time. This issue can be alleviated using the grid-

ded products, which allows the large-scale gyre circulation and eddy
field to geostrophically adjust to the SSH field. However, this is not
an ideal solution because of the limitations of the objective map-
ping technique used to map the altimeter observations onto a regu-
lar grid. Furthermore, since satellite SSH observations near the coast
are known to be unreliable (Saraceno et al., 2008), only observations
more than 50 km from the coast were assimilated.

The in-situ hydrographic profiles of T and S assimilated into the
model were taken from the quality controlled EN3 data archive main-
tained by the UK Met Office as part of the European Union ENSEM-
BLES project (Ingleby and Huddleston, 2007). These observations are
available from a variety of different observing platforms that include:
expendable bathythermographs (XBTs), mechanical bathythermo-
graphs (MBTs), conductivity temperature depth devices (CTDs), free
drifting Argo profiling floats, and autonomous pinneped bathyther-
mographs (APBs) in the form of tagged marine mammals. The ver-
sion of EN3 used here is version 2a which includes the XBT and MBT
temperature error corrections of Levitus et al. (2009). No velocity ob-
servations were assimilated into the model. However, work is under-
way to augment the observations assimilated into the ROMS system
described here with coastal HF radar observations of surface current
that cover the entire U.S. West Coast out to approximately 100 km
offshore (Oke et al., 2015).

3. The incremental 4D-Var system

As noted in Section 1, the circulation of an ocean model is uniquely
determined by the initial conditions, surface forcing and boundary
conditions. In (2) these were identified as the control variables, z,
which we can now write as z = (x(t0)T , fT , bT )T where x(t0) repre-
sents the initial state vector, while f and b are vectors of surface forc-
ing and open boundary conditions at all time steps within the data
assimilation window. Similarly, the vector of prior control variables

is denoted by zb = (xb(t0)T , fbT
, bbT

)T . The prior control vector yields
an estimate that may differ significantly from the observations which,
following (2), are denoted by yo. Variational data assimilation seeks to
identify the control vector za that minimizes the cost function in (2)
which is a measure of the distance, in a Mahalanobis sense, between

CCS Historical Observation Summary 
(1980-2010)

AMSR-E SST
MODIS-Terra SST
In situ (EN3) rejected

AVHRR AVHRR, AMSR, MODIS

Argo

Number of Obs:

AVHRR/Pathfinder SST
SSH (AVISO)
In situ (EN3)



Long reanalyses allow interpretive, predictive studies 
(e.g., of chlorophyll response during 2015-2016 El Nino)
• Estimates of historical 

26.0 kg/m3 density 
surface put 2015-16 
El Nino in context

• Along with EOF 
analysis of chl, 
allowed a couple 
month prediction of 
muted ecosystem 
response

particularly south of Point Conception,
cross-shore gradients were much less pro-
nounced and the broad-scale temperature
structure appears to be more consistent
with ongoing decay of preexisting north-
east Pacific warm anomalies [Bond et al.,
2015; Zaba and Rudnick, 2016] than with
a warming signature of El Niño.

The subsurface tells a similar story;
anomalies in the 26.0 kgm!3 isopycnal
depth (d26.0) were already established
by mid-2014 [Zaba and Rudnick, 2016]
and remained nearly constant through
late 2015 into 2016 (compare 2015–2016
(blue) to climatology (black) in Figure 4,
left column). In contrast, past strong
El Niños were characterized by a dra-
matic deepening of d26.0 in the latter
half of the year and peak anomalies in
December/January (Figure 4), consistent
with documented lags of 1–2months
from the tropics to the CCS [e.g., Jacox
et al., 2015a]. While our 35 year time series
show considerable correlation between
the Niño 3.4 Index and wintertime d26.0
off central/southern California (r≈ 0.8;
Figure 5), the three strongest El Niños
highlight important variability in this rela-
tionship. In 1982–1983, d26.0 ranged from
~0.5 to 2 standard deviations (σ) deeper
than that predicted by Niño 3.4, and
d26.0 in 1997–1998 was ~2σ deeper than
that predicted by Niño 3.4. In contrast,
d26.0 in 2015–2016 was ~1σ shallower
than that predicted by the Niño 3.4
anomaly (Figure 5). The observed CCS
d26.0 anomalies are consistent with a rela-
tively weak oceanic teleconnection from
the tropics in 2015–2016.

Surface winds in the winter of 2015–2016 were similarly uncharacteristic of El Niño. During 1982–1983
and 1997–1998, alongshore winds were near their climatological means off southern California (line 90)
and anomalously weak or poleward from midwinter through spring off central California (Figure 4).
Increasing upwelling favorable winds from July to November 2015, especially off southern California,
ran counter to climatological patterns and past El Niños. Relatively strong equatorward winds in
November–January 2015 likely contributed to a reduction in d26.0 anomalies during those months (Figure 4).
The divergence of regional wind patterns in 2015–2016 from those seen in 1982–1983 and 1997–1998 sug-
gests that as for d26.0, predictability of CCS conditions based on tropical SST anomalies is limited for any
individual El Niño event.

5. Impacts on Phytoplankton in the Central and Southern CCS

The 1982–1983 and 1997–1998 El Niños were both followed by sharp reductions in spring/summer phyto-
plankton biomass off the California coast [Fiedler, 1984; Kahru and Mitchell, 2000]. These reductions were

Figure 5. December–February mean d26.0 (frommergedmodel-glider data)
plotted against November–January mean Niño 3.4 anomalies for each
winter from 1981–1982 to 2015–2016. Isopycnal depths are averaged
within 50 km of shore. The solid lines are linear fits to the data; the dashed
and dash-dotted lines are ±1 and ±2 standard deviations from the linear fit.
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attributed to weak upwelling and/or a deep pycnocline/nutricline, each of which decreases nutrient supply
to the surface mixed layer. Here we explore the relationship between winter (December–February) d26.0
variability and biological impacts the following spring using an empirical orthogonal function (EOF)
decomposition of the surface chlorophyll field. Specifically, we calculate EOFs from 18 years (1998–2015)
of April–July mean log-transformed surface chlorophyll in a spatial domain spanning 30°N–40°N and
0–300 km from shore. The first EOF explains 32% of the observed variance and captures broad-scale inter-
annual variability in spring/summer chlorophyll concentrations south of San Francisco Bay (~38°N; Figure 6).
EOF1 is negatively correlated with wintertime d26.0 on all three glider lines (r =!0.7 ± 0.07), suggesting that
the physical ocean state in winter is a useful leading indicator of upwelling season productivity. Exclusion
of 1997–1998 from the regressions in Figure 6 lowers the strength of correlations (r =!0.5 ± 0.08) but does
not appreciably alter the regression line. Interestingly, the correlation between EOF1 and the Niño 3.4 Index
is significantly weaker (r=!0.5 ± 0.07 with 1997–1998, r=!0.3 ± 0.08 without), further demonstrating the
limitations of projecting El Niño impacts on the CCS from tropical SST anomalies alone. Note that the lower
modes of chlorophyll variability (not shown; EOF2, 11% explained variance; EOF3, 10% explained variance)
describe spatially heterogeneous fluctuations that are not strongly correlated with d26.0 (r = 0.1–0.3) or
Niño 3.4 (r = 0.1).

Figure 6. (left) Leading EOF of surface chlorophyll, 30–40°N and 0–300 km from shore, computed from April to July averages
of log-transformed chlorophyll for 1998–2015. EOF1 captures 32% of the observed variance. (right) Amplitude of EOF1 time
series plotted against December–February mean d26.0, averaged within 50 km of shore (e.g., “1997–1998” is log(chl) EOF1 for
April–July 1998 plotted against d26.0 for December 1997 to February 1998). The solid black lines are linear fits to the data; the
dashed and dash-dotted lines are ±1 and ±2 standard deviations about the linear fit. The 95% confidence intervals for linear
regressions (gray shading) and correlation coefficients were determined from a bootstrap analysis (see Methods section).
Three estimates for spring/summer 2016 chlorophyll (open blue markers) are estimated from the observed winter 2015–2016
d26.0. They assume (i) a return to the regression line (circle), (ii) a repeat of spring/summer 2015 anomalies (diamond, ~2σ
below the regression line), and (iii) persistence ofMarch 2016 anomalies (square, ~1σ below the regression line; see Figure S3).
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Impact of assimilation
on Eddy Kinetic Energy

4D-Var EKE   

No Assimilation EKE



Impact of Observations on Circulation Estimates 
(like OSSE)

( ( ))H= + -b ba y xx Kx
analysis

background
gain

obs
obs operator

4D-Var circulation estimate:

( )I xConsider a scalar function (e.g. transport)

( ) ( )I I ID = -a bx xChange in due to 4D-Var:( )I x

1 2 3

T

obs obs obsI I I ID ¾¾®D +D +D +K
! ID

 from obs #1ID

 from obs #2ID
 from obs #3ID

 from obs #4ID
T

ic fc obcI I I ID ¾¾®D +D +DK

Impact of the observations on :ID

Impact of controls variables on :ID



Quantifying the impact of observations 
and platforms on model estimates (like OSSE)

first baroclinic wave mode phase speed is !2 m s"1 (Chelton et al.,
1998) with barotropic wave speeds being two orders of magnitude
larger. Therefore it is useful to think of horizons for advection and
wave motions that represent the farthest distance over which
information from the observations can be expected to propagate
during an analysis or forecast cycle and at the same time influence
J 37N and J 500m. For the 7 day intervals considered here, the hori-
zontal advection horizon extends only !60 km from the 37!N
and 500 m isobath sections shown in Fig. 1b. The first baroclinic
mode wave horizon on the other hand will extend almost all the
way to the open boundaries in the case of non-dispersive coastally
trapped waves and short inertia-gravity waves, while the barotrop-
ic wave horizon will encompass the entire model domain. The
coastal wave guides will also act to channel information along
the coast which is quite evident in Figs. 10 and 11.

In addition to dynamical influences, the prior error covariances
D imposed on 4D-Var will act to spread information spatially,
!100 km in the case of the initial conditions, and !600 km in the
case of the surface forcing. The multivariate balance operator (Part
I, Section 5.2) may also yield some non-local influences when the
elliptic equation for balanced free surface height increments is
used (cf. Eq. (20) of Part I).

While some of the observation impacts are associated with a
positive influence of the observations to the ocean circulation anal-
yses, some of the impacts will also be detrimental. The latter may
arise from several factors, including erroneous data, model error,
(i.e. where the model struggles or is unable to reproduce an ob-
served field value), errors in the forcing, and initialization shocks
associated with dynamical imbalances that invariably exist at the
beginning of each data assimilation cycle. Some of these effects
are evident in the time evolution of the array modes (see Part II,
Section 6.3) and representer functions for individual observations
(not shown). Therefore continuous monitoring of observation im-
pacts will be useful for identifying suspicious observation plat-
forms as well as areas of poor model performance and likely
model error.

6. Observation sensitivity

As described in Part I (Section 7.3), the analysis (posterior) con-
trol vector ẑ can be expressed as:

ẑ ¼ zb þKðdÞ ð13Þ

Fig. 10. Maps showing the rms contribution of observations at each observation location to the total increment DJ 37N over the period July 2002–December 2004 averaged
over all I4D-Var cycles using WC10. The impact of each satellite SSH observation location is shown in (a), each satellite SST location in (b) and the in situ salinity observations
from (c) Argo floats, and (d) CTDs which come primarily from repeat sampling arrays. In the case of in situ observations at various depths, the contributions shown are depth
integrals of the observation impacts. The color bar scales are in Sverdrups. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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expected in J arising from changes dyi = ! di in some of the obser-
vations. This would cause the innovations associated with the af-
fected observations to vanish, and is tantamount to perfect
agreement between the model background and the affected obser-
vations. According to Fig. 14c, a change dyi = ! di in all of the SSH
observations would yield an increase in alongshore transport
"0.6 Sv, some six times larger and in the opposite sense to the
change predicted by the observation impact of Fig. 14b.

Observation sensitivity calculations require ð@K=@yoÞT , however
at the present time the adjoint of 4D-Var is only available in ROMS
for the dual formulation. As shown in Part II (Section 3.1) the dual
formulation is considerably less efficient than the primal form, in
which case the period July 2002–December 2004 (comprised of
123 assimilation cycles) represents a considerable computational
challenge for WC10. Therefore we will demonstrate the utility of
observation sensitivity using a coarser resolution model with
30 km horizontal resolution and 30 r-levels. This is the model re-
ferred to as WC30 in Part II, and for consistency we will use the
same notation here. WC30 was run sequentially using R4D-Var

with 1 outer-loop and 50 inner-loops spanning 7-day assimilation
cycles. As shown in Part II (Fig. 2b and Fig. 4) this is sufficient to
guarantee a significant level of convergence of J towards its mini-
mum value using R4D-Var at this resolution. Fig. 2 also shows
the ratio of the final and initial values of J for the R4D-Var sequence
using WC30 where an order of magnitude reduction in J during
each cycle is typical.

Using the WC30 R4D-Var sequence, the changes in J predicted
by the observation impact and observation sensitivity calculations
were compared with direct calculations in which observations
were withheld during each 4D-Var cycle. However, in the interest
of space, we will confine our attention to the alongshore transport
only.

Fig. 15a shows a time series of the prior transport J 37N in WC30
which is qualitatively similar to that of WC10 shown in Fig. 3a. The
transport increments DJ 37N and the contribution of each observa-
tion platform to DJ 37N for each 7-day R4D-Var cycle based on the
observation impact calculations using (9) is shown in Fig. 15b.
While on average SST and SSH observations exert the largest

Fig. 14. (a) A histogram showing the total number of observations and the number of observations from the different observing platforms during the R4D-Var cycle spanning
the period 29 March–5 April, 2003 using WC10. (b) A histogram of the the total increment DJ 37N (red) and the contributions to DJ 37N of observations from each platform
computed from the observation impact (9) during the same R4D-Var cycle. (c) A histogram showing the total transport increment dJ 37N % DJ 37N (red) and the contribution to
dJ 37N associated with observations from each platform computed from the observation sensitivity (16) assuming a perturbation in the observations dyo = d. There were no
XBT or TOPP data available during this 7 day period. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(e.g., impact on nearshore upwelling transport 
across 40 m and alongshore transport)



We have developed version of 4D-Var 
for use with ROMS coupled with biogeochemistry 
(for two ecosystem models)

NPZD
(Powell et al. 2006)

NEMURO
(Kishi et al. 2011)

4 boxes 11 boxes



One challenge: Parameter 
Sensitivity

Monte Carlo optimization

• 9 parameters (NPZD)

• 43 parameters (NEMURO)

• Multiple minima
• No clear parameter bias

Mattern and Edwards (2017)



Directed search can 
improve parameter values 
over Monte Carlo methods
• EA = Evolutionary Algorithm
• DE = Differential Evolution
• ABC = Artificial Bee Colony

Observations Reference Monte Carlo Optimization



Logarithmic 4D-Var

• Gaussian data vs skewed data

• Positive and negative variables vs 
positive definite concentrations

• We assume lognormal variables

• For 4D-Var, requires additional 
linearizations

Logarithm transformation
Surface chl-a

Campbell (1995)



Fully Coupled G4DVar and L4DVar using 
augmented state vector
Gaussian Cost function

Lognormal Cost function

Cost functions can be 
combined in terms of 
augmented state vector and 
error covariances 

B =


BG 0
0 BL

�

R =
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RG 0
0 RL

�

�z =
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�xG
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�

Song et al. (2012, 2016b)
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is more common in physical applications ( Stammer et al., 2002; 
Powell et al., 2008; Forget, 2010 ). In some cases, model deficien- 
cies or inconsistencies have been identified through unsuccessful 
parameter estimation when the model is ultimately unable to rep- 
resent observed features ( Fennel et al., 2001 ). 

Although estimating state variables and model parameters us- 
ing variational methods is similar, one important difference ex- 
ists for biogeochemical problems. In both cases, control variables 
are optimally adjusted to minimize a cost function that is often 
defined as a quadratic misfit between the observations and cor- 
responding model states. The difference lies in the statistics of 
the control variables and their errors. In parameter estimation, it 
is generally assumed a priori that the parameters are consistent 
with a Gaussian distribution, although recent work suggests this 
is not always the case ( Mattern et al., 2012; Fiechter et al., 2013 ). 
However, the probability density function (PDF) of biogeochemi- 
cal state variables is not Gaussian but better represented by a log- 
normal distribution (e.g., see Campbell, 1995 for analysis of satel- 
lite chlorophyll). In addition, biogeochemical variables are positive- 
definite. If a prior Gaussian distribution is assumed to estimate the 
state variables, it is possible that the maximum likelihood value of 
the posterior PDF may be negative. This means that the prior Gaus- 
sian distribution assumption can lead to negative posterior concen- 
trations for biogeochemical state variables after fitting the obser- 
vations. In contrast, a lognormal distribution constrains the opti- 
mal posterior estimation to be always positive. Thus, it is desirable 
to reformulate the variational method using the assumption of a 
lognormal distribution for biogeochemical variables for computing 
posterior model state estimation. 

Fletcher and Zupanski (2006a ) introduce a 3-dimensional vari- 
ational method based on the assumption that variables are log- 
normally distributed, and it is expanded to a 4-dimensional varia- 
tional method (4DVar) in Fletcher (2010) . Song et al. (2012) trans- 
form biological variables to log-space where their distribution is 
more Gaussian and apply an incremental form of this method to a 
one dimensional nutrient-phytoplankton-zooplankton (NPZ) model 
in a twin experiment. In the incremental approach, small adjust- 
ments, or increments, to the state vector (in this case, model ini- 
tial conditions) are determined using a tangent linear assumption 
( Courtier et al., 1994 ). A maximum likelihood value of the pos- 
terior PDF is determined in log-space and then transformed back 
to the original space using the exponential function. Their results 
show significant improvement in ecosystem model state estimates 
for both observed and unobserved variables. This method implic- 
itly preserves the positive-definite property because the exponen- 
tial function maps any input to a positive value. Fletcher and Jones 
(2014) introduce a multiplicative incremental variational data as- 
similation method in which the optimization problem is expressed 
with geometric tangent linear model and does not go through the 
transformation to log-space. 

Although 4DVar with the assumption of lognormally distributed 
variables and errors (L4DVar) is more appropriate for biogeochem- 
ical data assimilation, its practical implementation in a realistic 
configuration can be problematic. In conventional 4DVar that a pri- 
ori assumes variables and errors are Gaussian distributed (G4DVar), 
the optimal state estimates are often obtained from the incre- 
mental formulation that seeks the optimal increment to the back- 
ground state. In this case, the increment is assumed to be small 
compared to the prior (or background) and its evolution reason- 
ably approximated by linearized model dynamics about a nonlin- 
ear model trajectory. This incremental approach reduces the op- 
timization problem to finding the minimum of a quadratic cost 
function and is formally equivalent to a truncated Gauss–Newton 
approach ( Lawless et al., 2005 ). However, in the incremental for- 
mulation of L4DVar, the cost function remains non-quadratic un- 
der the incremental assumption because of the logarithmic con- 

version of variables. The multiplicative incremental cost function 
in Fletcher and Jones (2014) is also non-quadratic. Consequently, 
the minimization algorithm requires several times more computa- 
tion than incremental G4DVar. 

In this study, we formulate an incremental L4DVar in quadratic 
form by making a first order, linear approximation for the non- 
linear terms using a Taylor expansion. The quadratic form of in- 
cremental L4DVar uses the same tangent linear model, adjoint 
model and minimization algorithm as incremental G4DVar, making 
the implementation straightforward. We evaluate its performance 
based on a nutrient-phytoplankton-zooplankton-detritus (NPZD) 
model coupled to an ocean circulation model, the Regional Ocean 
Modeling System (ROMS), in a twin experiment framework config- 
ured for the California Current System (CCS). Results of quadratic 
form of incremental L4DVar from the twin experiment is compared 
with that of G4DVar and the discussion about the properties of 
quadratic incremental L4DVar follows. 
2. Incremental 4DVAR 
2.1. Gaussian 4DVar 

One fundamental assumption in variational methods, though 
not always rigorously correct ( Wunsch and Heimbach, 2007 ), is 
that the distributions of observational errors and control variables 
are close to Gaussian. Bayes’ theorem can be used to derive the 
cost function for variables having a Gaussian distribution ( Lorenc, 
1986 ). 
J G (x 0 ) = 1 

2 (x 0 − x b, 0 ) T B −1 (x 0 − x b, 0 ) 
+ 1 

2 
N o ∑ 

i =1 (y i − x o i ) T R −1 
i (y i − x o i ) , (1) 

where x 0 = [ x 1 , x 2 , . . . , x n ] T 0 is a state vector at the ini- 
tial time, x b , 0 represents the background initial condition, y i = 
[ y 1 , y 2 , . . . , y m i ] T i is the i th observation set out of a total number 
of N o , and x o 

i = [ x o 1 , x o 2 , . . . , x o m i ] T i represents the model state evalu- 
ated at the observation points. Matrices, B and R i , represent back- 
ground and observational error covariance matrices, respectively. 
In general, the control variables may include surface and lateral 
boundary conditions and model errors, but in the case considered 
the control vector comprises only the model initial conditions. The 
vector, x o 

i , can be expressed in terms of the nonlinear model M i, 0 
that integrates the initial condition to t = t i , and the observation 
operator H i that maps integrated model solutions from the model 
space to the observation locations. Thus x o 

i = H i (M i, 0 (x 0 )) , and we 
seek the solution x a , 0 that minimizes (1) . 

The cost function J G can be rewritten in the incremental form 
( Courtier et al., 1994 ), 
J G (δx 0 ) = 1 

2 δx T 0 B −1 δx 0 
+ 1 

2 
N o ∑ 

i =1 (d i − H i M i, 0 δx 0 ) T R −1 
i (d i − H i M i, 0 δx 0 ) , (2) 

where d i = y i − H i (M i, 0 (x b, 0 )) , and matrices, H i and M i , 0 , are tan- 
gent linear representations of H i and M i, 0 , respectively. The cost 
function J G is now quadratic in δx 0 , and the computation for 
δx 0 reduces to the linear problem, A δx 0 = h , where A = B −1 + ∑ N o 

i =1 M T 
i, 0 H T 

i R −1 
i H i M i, 0 is the Hessian matrix of J G in (2) and h = 

∑ N o 
i =1 M T 

i, 0 H T 
i R −1 

i d i . In realistic atmospheric and oceanic problems, 
the size of A often exceeds 10 8 ∼ 10 9 , which makes computation 
of the inverse of A difficult or impossible. However, the direct in- 
verse computation can be avoided using an iterative, optimization 
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= 
 
   

(x o 
b,i ) 1 0 · · · 0 
0 (x o 

b,i ) 2 · · · 0 
. . . . . . . . . . . . 
0 0 · · · (x o 

b,i ) m i 

 
   

−1 
(13) 

and (x o 
b,i ) j is the j th element of the vector x o 

b,i . Eq. (12) can then 
be expanded as 
ln (x o b,i + δx o i ) ≈ ln x o b,i + L i H i M i, 0 (x a, 0 − x b, 0 ) 

= ln x o b,i + L i H i M i, 0 (x b, 0 ◦ exp (δg 0 ) − x b, 0 ) , (14) 
and can be further linearized as 
ln (x o b,i + δx o i ) ≈ ln x o b,i + L i H i M i, 0 (x b, 0 ◦ (1 n + δg 0 ) − x b, 0 ) 

= ln x o b,i + L i H i M i, 0 x b, 0 ◦ δg 0 
= ln x o b,i + L i H i M i, 0 X b, 0 δg 0 , (15) 

where X b , 0 is a diagonal matrix comprised of the elements of x b , 0 . 
As a result, the cost function for incremental L4DVar in (8) can 

be written 
J L (δg 0 ) 

= 1 
2 δg T 0 B −1 

L δg 0 
+ 1 

2 
N o ∑ 

i =1 
(
p i − L i H i M i, 0 X b, 0 δg 0 )T 

R −1 
L,i (p i − L i H i M i, 0 X b, 0 δg 0 ), 

(16) 
where p i = ln y i − ln x o 

b,i , and (16) is now quadratic with respect to 
δg 0 . The gradient of J L with respect to δg 0 is 
∂ J L 

∂δg 0 = B −1 
L δg 0 − X T b, 0 N o ∑ 

i =1 M T 0 ,i H T i L T i R −1 
L,i (p i − L i H i M i, 0 X b, 0 δg 0 ), 

(17) 
and the Hessian is 
∂ 2 J L 
∂δg 2 0 = B −1 

L + X T b, 0 
( 

N o ∑ 
i =1 M T 0 ,i H T i L T i R −1 

L,i L i H i M i, 0 
) 

X b, 0 . (18) 
The optimal solution δg 0 can be estimated using the Lanczos 

form of conjugate gradient algorithm as described in Section 2.1 . 
After all iterations, the solution in log-space can be easily con- 
verted to x a , 0 using (9) . 

The quadratic cost function (16) has two additional matrices 
X b , 0 , L i compared to the cost function of incremental G4DVar in 
(2) . These two matrices, however, are trivial to handle because they 
are diagonal matrices and represent weighting factors for each vec- 
tor element. Thus the additional computational expense resulting 
from these two matrices is negligible. 
3. Data assimilation of surface chlorophyll data 
3.1. Model 

In this section, we compare the performance of incremental 
G4DVar and quadratic incremental L4DVar within the twin experi- 
ment framework using a NPZD model coupled to ROMS. The NPZD 
model has four, nonlinearly interacting components: phytoplank- 
ton ( P ), zooplankton ( Z ), nutrient ( N ) and detritus ( D ) ( Powell et al., 
2006; Fiechter et al., 2009 ). Specifically, P uptakes nutrient ( N ) and 
grows following a Michaelis–Menten formulation; it is consumed 
by Z with an Ivlev formulation. The mortality rate of both P and 
Z are linearly proportional to their concentrations and their loss is 
added to D . The concentration of D decreases with the remineral- 
ization of D to N that is linearly proportional to its concentration. 

Table 1 
Parameter names, values and units for the NPZD model. 

Parameter name Value Units 
Light 
Extinction coefficient for sea water 0 .067 m −1 
Photosynthetically active radiation (PAR) 0 .43 Dimensionless 
Phytoplankton 
Self-shading coefficient 0 .02 m 2 mmol N −1 
Initial slope of P –I curve 0 .02 m 2 W −1 
Uptake rate for nitrate 1 .0 day −1 
Half-saturation constant for nitrate 1 .0 mmol N m −3 
Mortality rate 0 .1 day −1 
Zooplankton 
Grazing rate 0 .65 day −1 
Ivlev constant 1 .4 Dimensionless 
Excretion efficiency 0 .3 Dimensionless 
Mortality rate 0 .145 day −1 
Detritus 
Remineralization rate 0 .1 day −1 
Sinking velocity 40 m day −1 

It also redistributes vertically by sinking with prescribed vertical 
sinking velocity. The parameters used in the NPZD model are listed 
in Table 1 . 
3.2. Setting 

The CCS region was chosen for the twin experiment. Our do- 
main covers the region ranging 134–115.5 °W and 30–48 °N with a 
horizontal resolution of 1/3 ° and 30 vertical levels. This model do- 
main has been used in other studies for ROMS 4DVar, and it is 
described in detail by Broquet et al. (2009, 2011) and Moore et al. 
(2011a) . 

To prepare the initial condition for NPZD variables and the 
background error covariance matrix, a 45-year physical-biological 
coupled forward run was executed. The model was forced us- 
ing fluxes derived from CORE2 (Common Ocean-Ice Reference Ex- 
periments; ( Large and Yeager, 2009 )), and open boundary condi- 
tion data was taken from monthly output from the Simple Ocean 
Data Assimilation (SODA, version 2.1.6) data set with half-degree 
resolution ( Carton and Giese, 2008 ). The initial condition for N 
was taken from monthly climatological values (World Ocean Atlas 
2001). Other variables, for which climatological data is not avail- 
able, had uniform concentrations horizontally and vertically with a 
constant value (0.1 mmol N m −3 ). Similar to the initial conditions, 
the open boundary condition for N was derived from climatology 
and a constant boundary value was chosen for P, Z and D . 

The simulations for incremental G4DVar and quadratic incre- 
mental L4DVar started from January 1st, 2001. The initial condi- 
tions for the physical circulation were taken from a data assimi- 
lation run described by Broquet et al. (2009) (i.e., a physical data 
assimilation product on the same model domain within the same 
model framework). Surface forcing fields were derived from daily 
averaged atmospheric conditions produced by the Coupled Ocean 
Atmosphere Mesoscale Prediction System (COAMPS) ( Doyle et al., 
2009 ). Open boundary conditions for physical variables were taken 
from the monthly SODA data set. The initial and boundary condi- 
tions for the NPZD variables were obtained from the 45-year for- 
ward run. The coupled NPZD-ROMS model was integrated for 4 
years from 2001 to 2004. 

Fig. 1 compares the model simulation with the Sea-viewing 
Wide Field-of-view Sensor (SeaWiFS) chlorophyll data during those 
4 years. The simulated P is converted to carbon using a C:N = 
(106 mol C):(16 mol N) Redfield ratio and then to chlorophyll us- 
ing a fixed C:Chl ratio of (50 g C):(1 g Chl), although a spatially 
dependent C:Chl ratio may be desirable to reflect variability in 
this value within the diverse phytoplankton of the CCS ( Goebel 
et al., 2010 ). The annually averaged chlorophyll data from the 
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-

Fig. 4. Same as Fig. 2 , but RMSE of P, Z, N and D at the surface. 

--

(a) P, PDA (b) Z, PDA (c) N, PDA (d) D, PDA

(e) P, BDA (f) Z, BDA (g) N, BDA (h) D, BDA

(i) P, PBDA (j) Z, PBDA (k) N, PBDA (l) D, PBDA

Fig. 5. Same as Fig. 3 , but RMSE of P, Z, N and D at the surface. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 
of this article.) 
posterior estimate. Although this is not limited to our assimila- 
tion system, it is possible that degrading increments can be am- 
plified due to the transformation back to the original space us- 
ing the exponential function. We note that the limited areas of 
degradation occur for unobserved variables only, indicating that 
the system improves the phytoplankton estimates through occa- 
sionally unrealistic changes to variables for which we have no in- 
formation other than background error statistics. Such performance 
is not surprising in an estimation system, and generally could be 
improved through observation of other ecosystem elements. 

Two additional experiments outlined above better illustrate 
how modeled dynamics in coupled data assimilation influence the 
final state estimate. In BDAb, biological data is assimilated but 

only biological variables are adjusted. In this case, RMSE in bi- 
ological fields is reduced by approximately 35% on average (not 
shown), less than the reduction by BDA with adjustments to all 
variables. In BDA, the coupled data assimilation system partitions 
improvements to both physical and biological variables. Adjusting 
only biological fields limits the quantitative improvement in bio- 
logical fields over the full assimilation cycle relative to what can 
be achieved through adjustment also of physical fields. RMSE re- 
duction in physical variables is zero in BDAb because adjusted bi- 
ological variables do not affect the physical fields. 

In BDAp physical variables only are adjusted, and misfits in bio- 
logical variables can be reduced only through improvement in cir- 
culation and mixing. Although the phytoplankton biomass RMSE 

Please cite this article as: H. Song et al., Data assimilation in a coupled physical-biogeochemical model of the California Current Sys- 
tem using an incremental lognormal 4-dimensional variational approach: Part 2, Joint physical and biological data assimilation twin 
experiments, Ocean Modelling (2016), http://dx.doi.org/10.1016/j.ocemod.2016.09.003 

Persistence (1 month)

6 H. Song et al. / Ocean Modelling 0 0 0 (2016) 1–13 
ARTICLE IN PRESS 

JID: OCEMOD [m5G; September 14, 2016;19:26 ] 

Fig. 2. Root-mean-squared error (RMSE) of u, v , SST and SSH at the surface in the four different simulation: free run (blue), analysis by the PDA (light blue), analysis by 
the BDA (white), analysis by the PBDA (light red). Red bar represents the one-month persistence RMSE. Error bars represent standard error from 1200 days (25 days × 12 
months × 4 years). 

-

(a) u, PDA (b) v, PDA (c) SST, PDA (d) SSH, PDA

(e) u, BDA (f) v, BDA (g) SST, BDA (h) SSH, BDA

(i) u, PBDA (j) v, PBDA (k) SST, PBDA (l) SSH, PBDA

Fig. 3. The ratio of the physical variables’ RMSEs between data assimilation runs and free run. Smaller than 1 (cold colors) represents the reduction of the RMSE while larger 
than 1 (warm colors) corresponds to the increased RMSE. White areas with the value 1 mean no change in the RMSE. Top, middle and bottom rows are for PDA, BDA and 
PBDA, respectively, and the columns represent u, v, SST and SSH from the left to the right. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
ical variables, greatest RMSE reduction ( ∼49% on average) for bio- 
logical variables occurs through coupled assimilation of both phys- 
ical and biological data (PBDA), and this reduction is statistically 
significant ( Fig. 4 ). 

Assimilating physical variables leads to mixed effects on the 
biological state estimation at the surface. Fig. 5 (a–d) show that 
PDA has a positive effect near the coastal regions but gener- 
ally degrades the biological estimation offshore. Changes in RM- 
SEs by PDA are similar in overall magnitude for all four biologi- 
cal variables. BDA and PBDA result in comparable RMSE reduction 
( Fig. 5 (e–l)). Largest RMSE improvement using these two methods 
occurs for phytoplankton, the observed variable. The second largest 

reduction in RMSE is seen in detritus. RMSE reduction for P and D 
occurs throughout the model domain. The improvements in zoo- 
plankton by BDA and PBDA occur mainly near the coast ( Fig. 5 (f,j)). 
Least improvement is found in the nutrient estimation, and it is vi- 
sually similar to the improvement by PDA ( Fig. 5 (c,g,k)). 

We note that although overall error decreases in all variables, 
there are limited regions where the RMSE increases after assim- 
ilating surface phytoplankton, even in PBDA. Such error increases 
occur most visibly in Z and N, but also at one location in D 
( Fig. 5 (f,g,j,k)). The NPZD model is a simple but highly nonlin- 
ear system, sometimes stretching the linear approximation used 
in 4DVar systems. In such cases, the increments can degrade the 
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ical variables, greatest RMSE reduction ( ∼49% on average) for bio- 
logical variables occurs through coupled assimilation of both phys- 
ical and biological data (PBDA), and this reduction is statistically 
significant ( Fig. 4 ). 

Assimilating physical variables leads to mixed effects on the 
biological state estimation at the surface. Fig. 5 (a–d) show that 
PDA has a positive effect near the coastal regions but gener- 
ally degrades the biological estimation offshore. Changes in RM- 
SEs by PDA are similar in overall magnitude for all four biologi- 
cal variables. BDA and PBDA result in comparable RMSE reduction 
( Fig. 5 (e–l)). Largest RMSE improvement using these two methods 
occurs for phytoplankton, the observed variable. The second largest 

reduction in RMSE is seen in detritus. RMSE reduction for P and D 
occurs throughout the model domain. The improvements in zoo- 
plankton by BDA and PBDA occur mainly near the coast ( Fig. 5 (f,j)). 
Least improvement is found in the nutrient estimation, and it is vi- 
sually similar to the improvement by PDA ( Fig. 5 (c,g,k)). 

We note that although overall error decreases in all variables, 
there are limited regions where the RMSE increases after assim- 
ilating surface phytoplankton, even in PBDA. Such error increases 
occur most visibly in Z and N, but also at one location in D 
( Fig. 5 (f,g,j,k)). The NPZD model is a simple but highly nonlin- 
ear system, sometimes stretching the linear approximation used 
in 4DVar systems. In such cases, the increments can degrade the 
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Demonstration: fully coupled 4D-Var using NEMURO

• Surface chl-a
• Year 2000

1-Day SeaWiFS

Model –No Assimilation

Model –With Assimilation

Mattern et al. (2017)



Forecast skill following assimilation is longer for 
BGC than for physics

68 J.P. Mattern et al. / Ocean Modelling 109 (2017) 55–71 

Fig. 10. The diatom fraction ( [diatoms] 
[diatoms]+[nanophytoplankton] ) for NEMURO in the (a,b) free simulation and (b,c) with data assimilation. The left column (a,c) show the annual average 

of the diatom fraction at the model surface, (b,d) show a 2D histogram (log-scaled) of the diatom fraction relative to the chlorophyll a concentration at the surface. 

Fig. 11. The mean normalized 4-day RMSE of 93 forecasting simulations as a function of the number of forecasting days in comparison to the assimilative and free sim- 
ulations for both NPZD and NEMURO. RMSEs are shown for (a) temperature observations and (b) log-transformed chlorophyll a data in the 200km coastal region (region 
shown in Fig. 1 ). The RMSEs are computed in 4-day bins, which coincide with the 4D-Var cycles, each normalized using the NPZD free simulation results to reduce the 
effect seasonal variation, before being averaged. For reference, the insets (c) and (d) show the corresponding non-normalized 4-day RMSEs for the assimilative and free 
simulations. For the assimilative simulations, the RMSEs for both prior and posterior solutions are shown, the forecasts are started from the prior solutions. Note, that it 
would take exactly 4 days, the length of an assimilation cycle, for a forecast to reach the prior DA error if started from the posterior solutions instead (indicated by the grey 
shaded areas in (a) and (b)). Note also, that the 4-day RMSEs differ from the RMSE values in Fig. 4 . 

The free (non-assimilative) simulations broadly recreate the 
general BGC dynamics of the CCS. Nearshore waters are more 
eutrophic and exhibit higher phytoplankton biomass and chloro- 
phyll a concentrations than the oligotrophic offshore region. Up- 
welling events in March through September deliver cold, nutrient- 
rich water to the surface, fueling a series of phytoplankton blooms 

along the coast. In comparison to the satellite data, the timing 
and intensity of these events is often inaccurate, especially in the 
NPZD model where peak chlorophyll a concentrations frequently 
exceed those in the data. Offshore, both free simulations under- 
estimate chlorophyll a concentrations, with a stronger negative 
bias present in the NPZD surface chlorophyll a estimates. The 

Mattern et al. (2017)



Biogeochemical Data Available for assimilation
BioArgo

Satellite Chlorophyll

Gliders increasingly have 
fluorescence, oxygen, nitrate, pH 

Shipboard



The observational challenge 
for biogeochemical assimilation
• Mismatch between state variables and 

observations
• Available (SCHL, in situ chl, nitrate, oxygen)
• Needed

• Better spatial coverage (true of Physics too)
• More state variables observed

• Phytoplankton type (starting to be product at CCI)
• Zooplankton (obs in counts, hard to convert to 

biomass)
• PON, DON
• Carbonate system requires pH (starting to become 

available) and one other component (e.g., TIC, 
pCO2).

In situ assets for one cycle

NEMURO
(Kishi et al. 2011)



Summary
• Regional physical data assimilation using 4D-Var are quite mature
• Routinely used in multiple IOOS Regional Associations
• NOAA WCOFS product is operational since March 2021
• Biogeochemical data assimilation using 4D-Var and a logarithm 

transform well-developed
• Routinely used in CCS
• Multiple studies possible with long reanalyses
• Limited data is a real challenge
• Physics would benefit from increased subsurface T&S.
• BGC would benefit from both spatial coverage and new types of observations


