Regional Reanalyses

Christopher A. Edwards (UC Santa Cruz)

CLIVAR Daily to Decadal Ecological Forecasting along
North American Coastlines Workshop

Woods Hole, MA

April 12-14, 2022

Credits to: Andy Moore, Paul Mattern, Hajoon Song

Some Regional Reanalysis

Products

These physical products use ROMS 4D-Var

CALIFORNIA OCEAN

13

15

ROMS 4D-Var

- Regional Ocean Modeling System (ROMS)
- 4-Dimensional Variational Assimilation
- Linearized model dynamics connect observations at different times
- Data can be continuous in time
- Long cycles (days-week)

Minimize:

$$J = (\mathbf{Z} - \mathbf{Z_b})^T \mathbf{B}^{-1} (\mathbf{Z} - \mathbf{Z_b}) + (\mathbf{y} - H(\mathbf{Z_b}))^T \mathbf{R}^{-1} (\mathbf{y} - H(\mathbf{Z_b}))$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$Prior \qquad Prior \qquad Obs \qquad Obs$$

$$error cov. \qquad operator \qquad error cov.$$

One example cycle showing SST Control variables are model initial conditions

• Though SST is shown, all variables are adjusted in ways consistent with background and observation error covariances

UCSC ROMS 4D-Var Historical Reanalyses 1980-2010 (ERA) and 1999-2012 (COAMPS) and near real-time system (2011-present)

- 1/10° CCS ROMS configuration
- Reanalyses 8-day assimilation cycles
- NRT: 4-day assimilation cycles
- Assimilates SST, SSH, SCHL, glider T/S, Argo T/S, HF RADAR velocities
- Model output available on a TDS
- Calendar searchable with figures
- Focus on nowcast and potentially short-term prediction (~ 1 week).
- Why do this?
 - Marine resource management (HABS, Fisheries, Sanctuaries)
 - Industry: aquaculture, shipping
 - CGSAR (in principle)

One motivation for state estimation

Physical Data Available for regional NRT assimilation

CCS Historical Observation Summary (1980-2010)

Long reanalyses allow interpretive, predictive studies (e.g., of chlorophyll response during 2015-2016 El Nino)

 Estimates of historical 26.0 kg/m3 density surface put 2015-16 El Nino in context

 Along with EOF analysis of chl, allowed a couple month prediction of muted ecosystem response

Figure 5. December-February mean d_{260} (from merged model-glider data) plotted against November-January mean Niño 3.4 anomalies for each winter from 1981–1982 to 2015–2016. Isopycnal depths are averaged within 50 km of shore. The solid lines are linear fits to the data; the dashed and dash-dotted lines are ± 1 and ±2 standard deviations from the linear fit.

Impact of assimilation on Eddy Kinetic Energy

Impact of Observations on Circulation Estimates (like OSSE)

 $\mathbf{x}_{\mathbf{a}} = \mathbf{x}_{\mathbf{b}} + \mathbf{K}(\mathbf{y} - H(\mathbf{x}_{\mathbf{b}}))$ 4D-Var circulation estimate: analysis obs operator gain background

Consider a scalar function $I(\mathbf{x})$ (e.g. transport)

Change in
$$I(\mathbf{x})$$
 due to 4D-Var: $\Delta I = I(\mathbf{x}_a) - I(\mathbf{x}_b)$

Impact of the observations on ΔI :

Impact of the observations on
$$\Delta I$$
:
$$\Delta I \xrightarrow{\mathbf{K}^T} \Delta I_{obs1} + \Delta I_{obs2} + \Delta I_{obs3} + \dots$$

Impact of controls variables on ΔI :

$$\Delta I \xrightarrow{\mathbf{K}^T} \Delta I_{ic} + \Delta I_{fc} + \Delta I_{obc}$$

 $\leftarrow \Delta I$ from obs #4

Quantifying the impact of observations and platforms on model estimates (like OSSE)

(e.g., impact on nearshore upwelling transport across 40 m and alongshore transport)

CTD Salinity

We have developed version of 4D-Var for use with ROMS coupled with biogeochemistry (for two ecosystem models)

NPZD

(Powell et al. 2006)

NEMURO

(Kishi et al. 2011)

One challenge: Parameter Sensitivity Monte Carlo optimization

9 parameters (NPZD)

43 parameters (NEMURO)

- Multiple minima
- No clear parameter bias

Directed search can improve parameter values over Monte Carlo methods

- EA = Evolutionary Algorithm
- DE = Differential Evolution
- ABC = Artificial Bee Colony

Logarithmic 4D-Var

- Gaussian data vs skewed data
- Positive and negative variables vs positive definite concentrations
- We assume lognormal variables
- For 4D-Var, requires additional linearizations

Logarithm transformation Surface chl-a

Figure 1. Histogram of 16,364 in situ measurements of ocean chlorophyll concentration from a compilation by *Balch et al.* [1992]. The data are global in scope, but sampling was concentrated at midlatitudes in the northern hemisohere, and central ocean give regions were undersampled.

Campbell (1995)

Fully Coupled G4DVar and L4DVar using augmented state vector

Gaussian Cost function

$$J_G(\delta \mathbf{x}_0) = \frac{1}{2} \delta \mathbf{x}_0^T \mathbf{B}^{-1} \delta \mathbf{x}_0$$
$$+ \frac{1}{2} \sum_{i=1}^{N_o} (\mathbf{d}_i - \mathbf{H}_i \mathbf{M}_{i,0} \delta \mathbf{x}_0)^T \mathbf{R}_i^{-1} (\mathbf{d}_i - \mathbf{H}_i \mathbf{M}_{i,0} \delta \mathbf{x}_0),$$

Lognormal Cost function

$$\begin{aligned} J_L(\delta \mathbf{g}_0) \\ &= \frac{1}{2} \delta \mathbf{g}_0^T \mathbf{B}_L^{-1} \delta \mathbf{g}_0 \\ &+ \frac{1}{2} \sum_{i=1}^{N_o} \left(\mathbf{p}_i - \mathbf{L}_i \mathbf{H}_i \mathbf{M}_{i,0} \mathbf{X}_{b,0} \delta \mathbf{g}_0 \right)^T \mathbf{R}_{L,i}^{-1} \left(\mathbf{p}_i - \mathbf{L}_i \mathbf{H}_i \mathbf{M}_{i,0} \mathbf{X}_{b,0} \delta \mathbf{g}_0 \right), \end{aligned}$$

Cost functions can be combined in terms of augmented state vector and error covariances

$$\delta \mathbf{z} = egin{bmatrix} \delta \mathbf{x}_G \ \delta \mathbf{g}_L \end{bmatrix} \quad \mathbf{B} = egin{bmatrix} \mathbf{B}_G & \mathbf{0} \ \mathbf{0} & \mathbf{B}_L \end{bmatrix}$$

$$\mathbf{R} = egin{bmatrix} \mathbf{R}_G & \mathbf{0} \ \mathbf{0} & \mathbf{R}_L \end{bmatrix}$$

Fully coupled 4DVar Gaussian (physical) lognormal (biogeochemical) A ROMS model twin experiment

- Statistics from 30 1-month runs.
- Assimilating physical data and surface Phytoplankton
- Lowest error from combined PBDA

Physical DA

Biological DA

Physical and

Persistence (1 month)

Song et al. (2016b)

Demonstration: fully coupled 4D-Var using NEMURO

- Surface chl-a
- Year 2000

Forecast skill following assimilation is longer for BGC than for physics

Biogeochemical Data Available for assimilation

Satellite Chlorophyll

Gliders increasingly have fluorescence, oxygen, nitrate, pH

The observational challenge for biogeochemical assimilation

- Mismatch between state variables and observations
- Available (SCHL, in situ chl, nitrate, oxygen)
- Needed
 - Better spatial coverage (true of Physics too)
 - More state variables observed
 - Phytoplankton type (starting to be product at CCI)
 - Zooplankton (obs in counts, hard to convert to biomass)
 - PON, DON
 - Carbonate system requires pH (starting to become available) and one other component (e.g., TIC, pCO₂).

NEMURO

In situ assets for one cycle

Summary

- Regional physical data assimilation using 4D-Var are quite mature
- Routinely used in multiple IOOS Regional Associations
- NOAA WCOFS product is operational since March 2021
- Biogeochemical data assimilation using 4D-Var and a logarithm transform well-developed
- Routinely used in CCS
- Multiple studies possible with long reanalyses
- Limited data is a real challenge
 - Physics would benefit from increased subsurface T&S.
 - BGC would benefit from both spatial coverage and new types of observations

