

Global Warming Is Not Created Equal

Surface Temperature (°C) Relative to 1880–1920 Mean

Cold-Season (Oct.-Feb.) SST Anomalies

Warming in Arctic >> land areas >> oceans

Weak gradient ———— weak wind

Surface temperature trends

October 1982-2020

HOTSPOTS

SEA SURFACE TEMPERATURE TRENDS (°C PER DECADE)

Calculated for 1982–2020

Arctic Amplification: N. Pacific

Pacific Decadal Oscillation (PDO)

Negative PDO => stronger Arctic amplification (Screen & Francis 2016) Positive PDO => stronger west-coast ridge (Sung et al 2016, Lee et al 2015)

"It Takes
Two to
Tango"

Hypothesis*

Extra heating intensifies ridge, making it more persistent.

TTT in Pacific/N. America: +PDO

Obs

Obs and model simulations show stronger Pacific ridging when PDO+ and warm Arctic in Pacific sector

Surface temperature trends

October 1982-2020

HOTSPOTS

SEA SURFACE TEMPERATURE TRENDS (°C PER DECADE)

Calculated for 1982–2020

Arctic Amplification: N. Atlantic

Evidence of "Two to Tango" in Eurasia

Cohen et al, Nature Geosciences, 2014

also Jaiser et al 2012, 2013; Kim et al 2014; Furtado et al 2015; Wu and Smith 2016; Zhang et al 2016; Kretschmer et al 2016; Nakamura et al 2016; Zou et al 2017; McKusker et al 2017; Zhang et al 2018; Ye et al 2018; Hoshi et al 2019

Texas Freeze Feb. 2021

Temperature differences from average

Near-surface air temperature trends – DJF (1990-2013)

from Cohen et al. (2014)

Changing Patterns of the Stratospheric Polar Vortex

BARENTS SEA ICE

LAPTEV SEA ICE

Parting points:

- Temperature gradients make winds. Mess with those gradients and winds will change, weather will change.
- Regional Arctic amplification can enhance or reduce influences of SST fluctuations (natural or forced), and vice versa ("Levers")
- > Ocean-ice-jetstream feedbacks accelerate sea-ice loss via poleward heat fluxes
- > Latest research suggests rapid Arctic warming will contribute to:
 - Increased frequency of polar vortex disruptions
 - Increased persistence of weather regimes
 - Increased heat, drought, and fires in western U.S.
- > Ocean influence on Barents/Kara region may be waning ala Cold Blob

Thank-you!

Jennifer Francis

Senior Scientist

jfrancis@WoodwellClimate.org

Extras

ERA5 Oct to Feb 2000-2021

850mb Air Temperature Anomaly 1981-2010 Climatology

Arctic versus ENSO impacts on winter (DJF) zonal-mean zonal winds and temperatures.

Portion of trends explained by Barents/Kara ice loss in Nov. and Eurasian snow advance in Oct. => Cooling over mid-latitude continents and U contours similar to observed trends.

Portion of observed trends explained by ENSO.

=> None in mid-latitudes.

Cohen GRL 2016

Observed DJF 2013/14

Model: ExTrop Pac SSTs

Pacific ridge initiated by SST anomalies (PDO+) is intensified by ice loss in Pacific sector of Arctic

ΔZ500

=> Stronger
ridge more
persistent

Lee et al, GRL 2015

REGIONAL TEMPERATURE ANOMALIES IN 2022

BASELINE: 1951-1980

NORTHERN HEMISPHERE: TEMPERATURE TRENDS (°C PER DECADE)

