Understanding Southern Ocean Influences on Climate

<u>Collaborators</u> Kyle Armour Gerard Roe Aaron Donohoe Dargan Frierson Tyler Cox July 31st, 2023

200 km

Understanding The Southern Ocean in Flux

 Need to understand dynamics of Southern Ocean and its connections in the face of uncertainty

 Including unpredicted cooling from 1980-2015 (ERA 5 trends) →

Understanding The Southern Ocean in Flux

• To be ready for future changes...

Sea Ice Extent, 28 Jul 2023

Early Southern Ocean Discoveries

- Edmond Halley led the first ever *purely* scientific voyage in 1700
- Crossed the Antarctic polar front
- Mentions in his journals how *cold* the Southern Ocean was

THE CEY S ·E

- Average temp at 52.5° S (farthest south Halley went): 4° C in summer!
- Avg temp at 52.5° N (off coast of England): 8° C in winter!

- Average temp at 52.5° S (farthest south Halley went): 4° C in summer!
- Avg temp at 52.5° N (off coast of England): 8° C in winter!

• Annual mean

Models Struggle to Produce Cold Enough Temps

- Historical simulations from 31 CMIP6 GCMs
- Annual mean surface temperature (1980-2014)
- Reanalysis in **black**
- Increasingly large errors at higher latitude

Zonally averaged surface temperature

Also very large reflection of solar radiation

• Lots of SW radiation reflected back to space in SH high latitudes (CERES 4.2 Climatology)

Also very large reflection of solar radiation

 Lots of SW radiation reflected back to space in SH high latitudes (CERES 4.2 Climatology)

Compare SH with NH

• Lots of reflection from 50-90 S

Compare SH with NH, Clear Sky and All Sky

- Much of the difference is due to surface albedo at high latitudes
 - But clouds over the Southern Ocean matter too!

Model Simulation of Upward SW at TOA

• Historical model simulations of upward SW and CERES (black)

Energy Transports Connect Latitudes

- Especially underestimated southward transport in Southern Ocean
 - This spreads the warmer temperatures equatorward

Southern Ocean Energy Transports

• Moisture flux is about right on average, total flux is underestimated

Southern Ocean Energy Transports

• Models underestimate dry static energy flux

Southern Ocean Energy Transports

- Adding AMIP (fixed historical SST) simulations in green
 - These have better agreement with observed fluxes (but not perfect!)

Let's examine AHT trends!

- 3 reanalysis datasets
 - ERA5, JRA-55, and MERRA2
- CMIP6 model simulations
 - 31 coupled models have fully interactive oceans and atmosphere
 - 28 atmosphere-only (AMIP) models have oceans with sea-surface temperatures (SST) that are set to observed values. This can help us isolate the role of ocean SST trends in influencing AHT trends
 - CESM2-LE A 100-member coupled ensemble
- Overall this is ~100TB of data!
 - Shows the importance of having tools to deal with large datasets

Climatological AHT

Climatology

AHT Trends

AHT Trends

Trends are linear trends from 1980-2014

AHT Trends

AHT Trends

Trends are linear trends from 1980-2014

Compensation between AHT components results in small total AHT trend

Compensation between AHT components is a robust principle

- Adding mountains to a climate model simulation creates large AHT responses in individual AHT components
- Total AHT is relatively invariant due to compensation

MMC: Mean meridional circulation SE: Stationary eddy TE: Transient eddy

Do models show similar trends?

Filled circles denote statistically significant trends

Filled circles denote statistically significant trends

TE AHT is connected to meridional SST gradients

TE AHT is connected to the strength of the meridional temperature gradient

TE AHT is connected to meridional SST gradients

TE AHT is connected to the strength of the meridional temperature gradient

An increase in the meridional temperature gradient will increase the TE AHT

TE AHT is connected to meridional SST gradients

TE AHT is connected to the strength of the meridional temperature gradient

An increase in the meridional temperature gradient will increase the TE AHT

Southern Ocean SST differences partially control TE

trends

Trends are linear trends from 1980-2014

Southern Ocean SST differences partially control TE

trends

Southern Ocean SST differences partially control TE

trends

SST: Sea-surface temperature TE: Transient eddy Trends are linear trends

from 1980-2014

Southern Ocean AHT trend summary

- SST changes have driven TE AHT strengthening
- TE AHT strengthening has been countered by MMC AHT strengthening
 - Due to this compensation total AHT has not changed much

Summary

- Southern Ocean biases are large
- Biases will spread to other parts of the world via energy transports
- Atmospheric energy transports have changed due to SST gradient changes
 - Captured in models if SSTs are given (not in coupled models)