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Applications of climate reconstructions [ state estimates / “reanalyses”
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Overview

Five examples:

1. Global mean net heat flux imbalances
2. AABW production in the Weddell Sea

3. Su

4. Im
an

btropical mode water formation

hact of DA on vertical velocities in
eddy-resolving ocean model

5. Surface temperature “hiatus”



Global net heat
flux imbalance

Global mean air-sea
fluxes unrealistically
large in most
reanalyses as a
consequence

of property
non-conservation

Global Average Heat Flux
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Balmaseda et al. (2015): Ocean Reanalysis Intercomparison Project (ORA-IP)




Example Gaining insight through

Applications

quantifying time-evolving
property budgets




Water mass transformation variability in the Weddell Sea in Ocean Reanalyses
Bailey et al., EGUsphere (2022)
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Water mass transformation variability in the Weddell Sea in Ocean Reanalyses

Bailey et al., EGUsphere (2022)

Anomalous volume budget
dv/dt =¥ + Q + R1

dV/dt. time-rate of volume change

« ¥: transport through boundaries
* O: thermodynamic transformation
* R1: residual due to discretization
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Example use of state estimates:
Use of observations-only vs. state estimates for understanding

Dynamics & variability of North Atlantic
(Eighteen-degree) Mode Water formation
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Temperature (°C)

Example use of state estimates:
Use of observations-only vs. state estimates for understanding

Diabatic and adiabatic contributions to water mass volume variability

in the North Atlantic subtropical gyre (26°N - 45°N) Evans et al., JPO (2017)
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Conservative
Temperature ( C)

Conservative

Temperature (”C)
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Example use of state estimates:

Use of observations-only vs. state estimates for understanding

Diabatic and adiabatic contributions to water mass volume variability

in the North Atlantic subtropical gyre (26°N — 45°N)

Total monthly dV/dt, Argo

=]

o

Monthly total & diathermal transformation

due to air-sea heat fluxes
NCEP + Reynolds SST
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Total monthly dV/dt, ECCO v4
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Example use of state estimates:
The ocean’s role in the early 2000’s Surface Warming Slowdown (“hiatus”)

Hydrographic data suggest muted warming or cooling of top 100 m
compensated by stronger subsurface warming down to 500 m

Sizable differences among different hydrographies

No info from
Argo prior
to ~2004!

Discrepancies |

in several
ocean
reanalyses

Nieves et al., Science (2015)

Global mean temperature trends (°C/yr)
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Example use of state estimates:

The ocean’s role in the early 2000’s Surface Warming Slowdown

ECCO agrees well with WOA, within estimated
uncertainties

No uncertainties provided by Nieves et al. for 200 1

hydrographic trends, 00s-90s

trend difference, 00s-90s

Sizable differences among hydrographies /
_
Argo cannot constrain the 90s 1000 |- |——WOA |
- /
. . — — GODAS |/
ECCO does not show large discrepancies below — — SODA
: : ORAS4
~300 m, apparent in the 3 reanalysis products RESST
- ECCO
1500 ' al |
Heimbach et al., Front. Mar. Sci. (2019) -0.02 0 0.02
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s it relevant for “short-window” DA?
Pilo et al., Ocean Modelling (2018)

Ocean Modelling 131 (2018) 71-85

Contents lists available at ScienceDirect

OCEAN MODELLING

Ocean Modelling

journal homepage: www.elsevier.com/locate/ocemod

Impact of data assimilation on vertical velocities in an eddy resolving ocean M)

Check for

model s

Gabriela S. Pilo"™", Peter R. Oke”, Richard Coleman™*, Tatiana Rykova”, Ken Ridgway"

@ Institute for Marine and Antarctic Studies, University of Tasmania, Australia
b commonwealth Scientific and Industrial Research Organisation (CSIRO) Oceans and Atmosphere, Hobart, Tasmania, Australia
€ Antarctic Climate and Ecosystems CRC, Australia




s it relevant for “short-window” DA?

Pilo et al., Ocean Modelling (2018)

In their words: “Sequential assimilation:”

o explicit update of the model state at regular intervals

e updates to model state are not ‘“dynamically consistent”, i.e., they are
generally not solutions to the model equations.

e can be regarded as a non-physical forcing term in the model equations
update
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e Unphysical re-adjustments
involve

—inertial oscillations,
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analysis SJ Adjustment

Time

—unrealistic mixing,

Temperature

— artificial baroclinic &

barotropic adjustment



s it relevant for “short-window” DA?
Pilo et al., Ocean Modelling (2018)

Sequential assimilation:

e Very few studies have assessed the integrity of
the model’s dynamical processes in a model run
with DA.

e One way to gain insight into this issue is to look at
behaviour of unobserved variable
in the data-assimilating model S|

e Investigate vertical velocity field
— pertinent to SWOT science 398

e Study of eddies in Tasman Sea
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s it relevant for “short-window” DA?
Pilo et al., Ocean Modelling (2018)
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s it relevant for “short-window” DA?
Pilo et al., Ocean Modelling (2018) - Verbatim

e Analyses show that adjustment for vertical velocity is significant
* This also impacts T and S through vertical advection
e Vertical velocity appears to adjust within ~1 day

e Care should be taken when using vertical velocities
“immediately” (i.e., one day) after assimilation

e Impact of artificial eddy distortion on the model’s T and S fields
are typically smaller than the increments applied during the
assimilation process itself




Summary

* For mechanistic understanding & climate diagnostic dynamical &
kinematical consistency often plays an essential role

e Climate diagnostics often seek small “signals” in noisy system

e Detailed investigation of property budgets from different terms in
conservation equations for tracers are powerful diagnostic tools

— but may be obscured by spurious effects from analysis increments

e Non-observed quantities also important for climate diagnostics or for
driving offline models (e.g., biogeochemistry, ecosystems)

- e.g., vertical velocity

Optimal tools for forecasting may not be optimal for reconstruction
— serious consideration for climate applications






Filter vs. | The virtues of property-

Smoother | conserving estimation




Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Numerical Weather Prediction (NWP) - a filtering problem

e Relatively abundant data sampling of the 3-dim. atmosphere

e NWP targets optimal forecasting
=» find initial conditions which produce best possible forecast;
=>» dynamical consistency or property conservation NOT required




Some of the challenges:
Why adjoints: dynamical & kinematical consistency in DA

Numerical Weather Prediction (NWP) - a filtering problem
Relatively abundant data sampling of the 3-dim. atmosphere
NWP targets optimal forecasting
=» find initial conditions which produce best possible forecast;
=>» dynamical consistency or property conservation NOT required

Ocean state estimation/reconstruction — a smoothing problem
Sparse data sampling of the 3-D. ocean state
Understanding past & present state of A
the ocean is a major goal all by itself
=» use observations in an optimal way
=» dynamic consistency & property | |.--="""
conservation ESSENTIAL for climate




