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“It ain’t what you don’t know that gets you into trouble. It's what
you know for sure that just ain't so.” Mark Twain




Overview

1. Uncertainties and biases in inter-decadal SST variations during
the instrumental period
a. Decoupling of land-ocean temperatures prior to 1940
b. Rapid early 20th Century SST warming
c. Discrepancies between coastal land and sea temperatures
2. Uncertainties in inter-decadal and longer SST variations over
the Common Era
a. How large was the Little Ice Age?
b. Was the Little Ice Age spatially coherent?
c. Do simulations produce sufficient internal SST variability?



How well do we know SST trends over the instrumental era?
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Global ocean and land temperature decouple prior to the 1940s
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Global ocean and land temperature decouple prior to the 1940s

Global land
temperature anomalies (°C)
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Global ocean and land temperature decouple prior to the 1940s
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Global ocean and land temperature decouple prior to the 1940s

SST anomalies [°C]
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Biases in trends between 1910-1943 partly map onto
radiative responses
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Disparate, albeit plausible, global temperature reconstructions
over the Common Era
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Evidence for a globally coherent Little Ice Age (PAGESZ2k, continental)
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Evidence for a globally coherent Little Ice Age (PAGES2k, oceans)
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No evidence for globally coherent warm and cold periods over the
preindustrial Common Era (PAGES2K, ocean and land)
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No evidence for globally coherent warm and cold periods over the
preindustrial Common Era (PAGES2K, ocean and land)
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Only temperature reconstructions with low temperature variance are
consistent with simulations, but note discrepancies at 1100 and 1250 CE
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Evidence for models not producing sufficient SST
variability at inter-decadal time scales.

variance ratio
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In the tropics at 20-50 year periods, observed sea
surface temperature variability averages double
that found in the CMIP5 ensemble of simulations.
(Laepple and Huybers, 2014)



Evidence for models not producing sufficient SST
variability at centennial and longer time scales.
Observations
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Evidence for models not producing sufficient SST
variability at centennlal and longer time scales
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“We find that current proxy system
models (PSMs) can help resolve
model-data discrepancies on
interannual to decadal timescales,
but cannot account for the
mismatch in variance on
multi-decadal to centennial
timescales.”

(Dee et al., 2017)



Conclusions / further questions

1.

Evidence suggests that errors in bucket bias corrections led to
several effects:

a. Land-ocean temperature decoupling prior to the 1940s,

b. Too rapid early 20th Century SST warming,

c. Discrepancies between coastal land and sea temperatures.
Simulations and reconstructions of global average temperature
are consistent over the Common Era, if examining the recent
reconstruction having the smallest amplitude.

The Little Ice Age is observed to be coherent at centennial time
scales, implying that it also exists globally at shorter timescales.
Proxy SST indicators suggest that climate simulations produce
insufficient regional SST variability.






Notes

1. Topic falls somewhere between that of Chris Karnauskas (SST Pattern Evolution in the Instrumental
Record of the 20th Century) and Natalie Burls (Paleo Perspectives on the Pattern Effect on deep-time
scales).

2. I’'m unaware of papers using paleoclimate records to examine the pattern effect at decadal timescales, but
there are some important overlaps and first order questions. Forced vs. Unforced — how do patterns arise
and how come about. If you know the patterns, what implies about the energetics but the reverse. See
paper by Rob Wills — high latitude modes versus tropical.

3. What doe the paleo-record actually say about interdecadal variability in terms of magnitude and frequency
scaling, persistence (e.g., Laepple ...);

4. If a proxy is something that is functionally related to the quantity of direct interest, i.e., x=f(p), then SST
measurements prior to the 1960s are proxies by virtue of needing to be adjusted cooler for ERI and
warmer for buckets. Moreover, these mean offsets are regionally and temporally variable, hence
influencing patterns.

a. Pattern offsets can be corrected (Chan et al. etc.)
b. Mean offsets are harder but potentially also first order relative to land temperatures (Cowtan et al.
etc.)



Notes

1. Ultimately the coupled evolution of the climate system needs to be understood. Just as there is a radiative
response to SST patterns, there are also wind and buoyancy responses to SST patterns that will influence
the evolution of subsequent SST patterns.

2. Is the radiative-SST evolution deterministic?
3. One reason to study the radiative response to SST patterns, in particular, is that we have relatively longer

records of SSTs than radiative response. Given historical SSTs, is it possible to infer the radiative response
and better constrain historical and future values of lambda?



