

Seasonal-to-decadal variability and prediction of the Kuroshio Extension in the GFDL Coupled Ensemble Reanalysis and Forecasting system

Youngji Joh, Thomas L. Delworth, Andrew T. Wittenberg, William F. Cooke, Xiaosong Yang, Fanrong Zeng, Liwei Jia, Feiyu Lu, Nathaniel Johnson, Sarah B. Kapnick, Anthony Rosati, Liping Zhang, and Colleen McHugh

> Princeton University Geophysical Fluid Dynamics Laboratory University Corporation for Atmospheric Research Science Applications International Corporation

Societally-Relevant Multi-Year Climate Predictions Workshop Mar 28, 2022

Sea Surface Height (SSH) standard deviation

Pacific Western Boundary Current (WBC) system

Releases substantial heat to the atmosphere via turbulent fluxes of latent and sensible heat (Kuroshio-Oyashio Extension)

Small et al. 2008, Taguchi et al. 2009

Exhibits the strongest SSH variability due to oceanic current and mesoscale eddy activity

Effective proxy for decadal modulations of the Pacific WBC system (e.g., eddy kinetic energy level, ocean front, recirculation gyre) Qiu et al. 2014 (JCLI)

Motivations

KE variability plays a key role in modulating the Pacific decadal climate.

> UUAL

Pacific Western Boundary Current (WBC) system

 Releases substantial heat to the atmosphere via turbulent fluxes of latent and sensible heat (Kuroshio-Oyashio Extension)

• Exhibits the **strongest SSH variability** due to oceanic current and mesoscale eddy activity

• Effective proxy for decadal modulations of the Pacific WBC system (e.g., eddy kinetic energy level, ocean front, recirculation gyre)

• Multi-year predictability associated with slow oceanic baroclinic adjustment that carries the wind-forced SSH signals into the KE region

Exploring the representation and prediction skill of the KE SSH variability in GFDL SPEAR coupled climate model (reanalysis and forecast systems)

SPEAR (Seamless system for Prediction and EArth System Research)

Next generation modeling system for seasonal to decadal prediction and projection at GFDL AM4 atmosphere model + MOM6 ocean code + LM4 land model + SIS2 sea ice model

SPEAR_LES	
-----------	--

Large-Ensemble

atmosphere/land 100k ocean/sea ice appr

Coupled Initialization Reanalysis

RS-ATMSST

Restoring atmospheric temp/winds & SST No subsurface ocean observation

ODA

SST & subsurface ocean data assimilation No atmospheric observation

Nudging-ATMSST

Nudging atmospheric temp/winds/humidity & SST No subsurface ocean observation

SPEAR_LO	SPEAR_MED	SPEAR_HI	SPEAR_HI_25
100km	50km	25km	25km
approximately 1° (with tropical refinement)			25km

GFDL SPEAR Forecast systems

Decadal Retrospective Forecast (DRF, SPEAR_LO)

Yang et al. 2021 (JAMES)

Seasonal Retrospective Forecast (SRF, SPEAR_MED)

Lu et al. 2020 (JAMES)

Coupled Initialization Reanalysis

RS-ATMSST

Restoring atmospheric temp/winds & SST No subsurface ocean observation

ODA

SST & subsurface ocean data assimilation No atmospheric observation

Subsurface ocean observation is essential to resolve an accurate position of the KE ocean front and eddy-associated oceanic dynamics (upstream KE).

2. Both reanalysis systems detect reasonable KE SSH temporal evolutions comparable to Satellite including wind-forced decadal KE SSH variability (~10 year time scale).

Wind-induced KE SSH on longer time scales

Decadal Retrospective Forecast (DRF)

Significant KE SSH forecast skill up to **5 yrs when** using 20 member ENS mean, 3 yrs when using **individual model** in Decadal Retrospective Forecast system

Seasonal Retrospective Forecast (SRF)

"Initialization & lead time dependent" KE prediction skill

2017-2018 KE phase transition induced by the large meander episode

Higher multi-year prediction skill of dynamical model forecasts compared to that of **linear RW forecasts?**

Existence of strong air-sea coupling and coherent atmosphere and ocean fluctuations in coupled dynamical models, contributing to detect more accurate and comprehensive KE dynamics — a potential of real-time KE prediction

Observed (black) and predicted (colored) recent KE index

Summary and Discussion

- Significant multi-year prediction skill of KE SSH up to 5 years in decadal forecasts and 1 year in seasonal forecasts
- reemergence mechanism and enhanced oceanic Rossby waves.
- couplings (e.g., wind-related large meanders) over the WBC system.

Challenges

- Important role of subsurface ocean observation in simulating realistic KE spatial structure (e.g., ocean front)
- High dependency of short-lead (1-3 months lead) KE SSH prediction skill on ocean horizontal grids

Joh et al. 2022 Seasonal-to-decadal variability and prediction of the Kuroshio Extension in the GFDL Coupled Ensemble Reanalysis and Forecasting system. Journal of Climate, in press

Winter initialization contributes to long-lead prediction skill with longer inertial memory to the upper ocean by supporting

• Dynamical model prediction reveals higher KE forecast skill compared to linear RW model prediction by detecting strong air-sea

Coupled Initialization Reanalysis

RS-ATMSST

Restoring atmospheric temp/winds & SST No subsurface ocean observation

ODA

SST & subsurface ocean data assimilation No atmospheric observation

Nudging-ATMSST

Nudging atmospheric temp/winds/humidity & SST No subsurface ocean observation

Methods

GFDL SPEAR Forecast systems

Decadal Retrospective Forecast (DRF, SPEAR_LO)

Yang et al. 2021 (JAMES)

Seasonal Retrospective Forecast (SRF, SPEAR_MED)

Lu et al. 2020 (JAMES)

Coupled initializations for prediction systems

RS-ATMSST

Restoring ATM. temp/winds to JRA reanalysis (every 6 hrs) Restoring SST to ERSST (every 5 days), *No subsurface ocean assimilation*

SPEAR_LO (30 ensemble members) 1958-2020

Decadal Forecast system

Yang et al. 2021 (JAMES)

SPEAR LO model (100km for atmosphere/land &1° for ocean & sea ice components)

more details of SPEAR models in Delworth et al. 2020

Seasonal Forecast system

