

# GFMIP

### Pattern Workshop, 5/12/22

Jonah Bloch-Johnson, with help from Maria Rugenstein, Marc Alessi, Cristi Proistosescu, Jonathan Gregory, Chen Zhou, Yue Dong, Bosong Zhang, Ming Zhao, Jason Cole, and Andrew Williams, and more...



**Model.**" Branstator 1985



Understand pattern-driven changes in radiative feedbacks

**Understand pattern-driven changes in radiative feedbacks** 

**Expand our thinking beyond local radiative feedbacks** 

**Understand pattern-driven changes in radiative feedbacks** 

**Expand our thinking beyond local radiative feedbacks** 

Gives us one branch of the many causal loops of the full coupled system

**Understand pattern-driven changes in radiative feedbacks** 

**Expand our thinking beyond local radiative feedbacks** 

Gives us one branch of the many causal loops of the full coupled system

When they "fail," that can teach us something too.

# What do we need for a GFMIP Protocol?

**Background state** 

- What climatology (recent obs vs. piControl)
- How many years should one run the climatology to get flux averages?

Patch setup

- Amplitude
- Size
- Location
- Shape
- # of years run

**Other sst patterns?** 

**Output to save/publish** 

- Just Jacobians, or also full patches?































Zhang and Fueglistaler, 2020



**Zhang and Fueglistaler, 2020** 



#### net TOA flux



**Zhang and Fueglistaler, 2020** 





ascent, 750hPa



ICON

runs/figure from Andrew Williams











feedback (Wm-2K-1)











+2

+4





1.0 — true — all: 0.27, 0.93 0.5 **uet ToA flux (Wm**<sup>-2</sup>) -0.0 -1.0 -1.5 -2.0 -2.5 1880 1900 1920 1940 1960 1980 2000 

#### HadCM3, full: Dong et al./equal area, annual





#### HadCM3, full: Dong et al./equal area, annual

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

### **Different base climate?**

![](_page_36_Figure_1.jpeg)

![](_page_36_Figure_2.jpeg)

![](_page_36_Figure_3.jpeg)

![](_page_36_Picture_4.jpeg)

### **Different base climate?**

![](_page_37_Figure_1.jpeg)

![](_page_37_Figure_3.jpeg)

![](_page_37_Figure_5.jpeg)

![](_page_37_Figure_7.jpeg)

![](_page_37_Figure_8.jpeg)

260 263 266 269 272 275 278 281 284 287 290 293 296 299 sst(K)

260 263 266 269 272 275 278 281 284 287 290 293 296 299 sst(K)

-5.0 -4.2 -3.4 -2.6 -1.8 -1.0 -0.2 0.6 1.4 2.2 3.0 3.8 4.6 sst(K)

![](_page_37_Figure_12.jpeg)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96100 sic(%)

![](_page_37_Figure_14.jpeg)

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96100 sic(%)

![](_page_37_Figure_16.jpeg)

-100-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 sic(%)

![](_page_38_Figure_1.jpeg)

#### HadCM3, full: Dong et al (shifted, AMIP), annual

![](_page_39_Figure_1.jpeg)

#### HadCM3, full: Dong et al./equal area, annual

## **Control years needed**

![](_page_40_Figure_1.jpeg)

![](_page_40_Figure_2.jpeg)

### Patch years needed

![](_page_41_Figure_1.jpeg)

![](_page_41_Picture_2.jpeg)

![](_page_42_Figure_1.jpeg)

![](_page_42_Picture_2.jpeg)

![](_page_43_Figure_1.jpeg)

![](_page_44_Figure_1.jpeg)

![](_page_45_Picture_1.jpeg)

Equal area:

![](_page_45_Figure_3.jpeg)

Equal lat/lon:

![](_page_45_Picture_5.jpeg)

# **GFMIP Protocol**

**Control simulation** 

- What climatology recent obs, because it allows for intermodel comparison?
- How many years to run the climatology to get flux averages? even 10 years is enough?

#### Patch setup

- Amplitude both positive and negative needed?
- Size/location more work needed to figure out how to account for resulting asymmetry
- Shape potential advantage to non-overlapping patches?
- # of years run 10 for 4 temp levels (or 20 for 2 temp levels)

**Other sst patterns? -** Uniform, especially -4, -2, +2, +4, to help us get the global response when doing abrupt4x?

### **Output to save/publish**

- Just Jacobians, or also full patches?

vs for intermodel comparison? **t flux averages? -** even 10 years is enough?

? how to account for resulting asymmetry patches?