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Review of SST Pattern Evolution
in the Instrumental Record

of the 20™ Century

Some relevant background on instrumental SST records

Updated comparison of SST trends between different instrumental records and over different periods of time
A closer look at the tropical Pacific Ocean

Quick look at SST trends in CMIP6 models & comparison to instrumental records

Some thoughts on physical mechanisms and related issues in models
A focus on the circulation of the equatorial Pacific Ocean

Outlook & open questions to stimulate discussion and further research
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gridded data sets suitable
for characterizing SST
variability and change
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1 8 5 4 Internationally organized system for 1 9 8 AVHRR on NOAA 19 8 O Moored arrays 1999 Argo floats
recording shipboard observations polar orbiting satellites S begin to fill out deployed
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Choices in methodology : LESR S o
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How to choose which data sets to include?

How to interpolate/fill gaps in time and horizontal space?

How little data 1s /o0 little data (e.g., Southern Ocean)? J
How to quality control the raw/input data?

How to introduce data from new obsetving platforms coming online over time?
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How to deal with spatial aliasing (¢.g., observations taken within eddies)?

How to deal with temporal aliasing (e.g., observations at different points in the diurnal cycle)?
How to account for vertical differences of measurement (ze., skin, 1 m, ~5m, ...)?

How to correct for other biases due to changes in observing method over time (e.g., bucket vs. intake)?
Apparently, even a ship’s country of origin introduces systematic biases (Chan and Huybers 2019).
How to quantify and convey uncertainties?
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HadSST3-4 In situ only Bl
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COBEI1-2 In situ only

NOAA ERSST4 In situ only

NOAA ERSST5  In situ only (including Argo)
HadISST1 In situ + satellite

Kaplan ESST2 In situ + satellite
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Internationally organized system for
recording shipboard observations

1 9 8 AVHRR on NOAA
polar orbiting satellites

1 9 8 O Moorted arrays
S begin to fill out

Choices in methodology

How to choose which data sets to include?

1 9 9 9 Argo floats
deployed

* How to interpolate/fill gaps in time and hotizontal spacé?-y
How little data 1s /o0 little data (e.g., Southern Ocean)?

HadSST3-4
COBE1-2
NOAA ERSST4
NOAA ERSST5
HadISST1
Kaplan ESST2

Not “filled” (but very large area averages)

EOF*
EOF*
EOF*
EOF*
EOF*

* Some combination of empirical orthogonal functions (EOFs), reduced space
optimal interpolation, Kalman filtering, and optimal smoothing. .. and each of
these techniques comes with an abundance of choices (e.g., how many EOFs,
what data to use for construction of EOFs).
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Internationally organized system for
recording shipboard observations

1 9 8 AVHRR on NOAA
polar orbiting satellites

1 9 8 O Moored arrays 1 9 9 9 Argo floats
S begin to fill out deployed

Choices in methodology

How to choose which data sets to include?

How to interpolate/fill gaps in time and horizontal space?
How little data is 700 little data (e.g., Southern Ocean)?
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The early decades are very poorly
observed, and the Southern Ocean
15 always poorly observed.
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o) Note: The global mean trends are all calculated over the
SST Tr ends ( C/ centur Y) ) 1870_2 Ol 9 same grid cells (the ones that are not blank in Kaplan2).
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o) Note: The global mean trends are all calculated over the
SST Tr ends ( C/ centur Y) ) 1870_2 Ol 9 same grid cells (the ones that are not blank in Kaplan2).
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SST Trends (°C/century), 1870-2019, Global mean trend removed
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Multi-Record Agreement in SST Trends, 1870-2019

Total trend Global mean trend removed

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Positive in all four = 1 Positive in all four = 1
Negative in all four = —1 Negative in all four = —1



Multi-Record Agreement in SST Trends, 1910—-2019

Total trend Global mean trend removed

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Positive in all four = 1 Positive in all four = 1
Negative in all four = —1 Negative in all four = —1



Multi-Record Agreement in SST Trends, 1950-2019

Total trend Global mean trend removed
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Multi-Record Agreement in SST Trends, 1990-2019

Total trend Global mean trend removed

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Positive in all four = 1 Positive in all four = 1
Negative in all four = —1 Negative in all four = —1



Slide contributed by Robb Wills

How anomalous are the observed multi-decadal SST trends
in the context of internal variability?
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ERSS1VS SET Trend(1979-2029) Observed Trend — Mean Model Trend

. Spread of Trends in Model Ensemble
1.6°

0.8

Ensemble Standard Deviations

-1.6
Anomalies greater than =2 have a less than

5% probability of occurring due to chance

16 models, ~600 simulations

Wills, Dong, Proistosescu et al. (in prep.) — Analysis of Observations and 16 Large Ensembles



Sea level perspective, courtesy of John Fasullo

Altimetry shows greater rates of rise in the western tropical Pacific than in the east
whereas CESM1 and CESM2 show greater rates in the east. The difference now
exceeds the range that can be explained by internal variability (which is also likely too large).
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Equatorial Pacific SST Trends

SST Trends (°C/120 yr), 1900-2019
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SST Trends (°C/120 yr), 1900-2010

nature ARTICLES
Chma'te Cha'nge PUBLISHED ONLINE: 8 JULY 2012 | DOI: 10.1038/NCLIMATE1591

Reconciling disparate twentieth-century
Indo-Pacific ocean temperature trends o .
in the instrumental record ' E :

Latitude

Amy Solomon* and Matthew Newman
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SST Trends (°C/century), 1870-2014

Mean of 51 CMIP6 Models Mean of 4 Instrumental Records

%
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The global mean SST trends are remarkably similar (0.40
observed vs. 0.43 °C/century modeled), but the regional
differences are of the same order of magnitude.



SST Trends (°C/century), 1870-2014

Mean of 51 CMIP6 Models Mean of 4 Instrumental Records
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The global mean SST trends are remarkably similar (0.40
observed vs. 0.43 °C/century modeled), but the regional .
differences are of the same order of magnitude. 0
On average, compared to a mean of instrumental records, -20
CMIP6 models exhibit:
*  More warming in the tropical Pacific (although it no longer looks like _40

the classic “El Nino-like response” as it did in CMIP3/5...)
*  Less warming in the tropical & subtropical Atlantic
*  Less warming near the western boundary currents -60

*  Less cooling in the high-latitude North Atlantic (“cold blob”) 0 50 100 150 200 250 300

Differqncé




SST Trends (°C/century), 1870-2014

What are the primary ways the CMIP6 trends differ from each other?
As estimated by EOF analysis of the 51 trends (global & tropical domains)
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SST Trends (°C/century), 1870-2014

Mean of 51 CMIP6 Models Mean of 4 Instrumental Records

100 150 200 250

]ust a few potential mechanisms shaping the regional patterns...

Changes in subtropical highs and associated wind forcing, surface fluxes, ez.
* Changes in poleward heat transport by AMOC (buoyancy-driven response)
* Shifts in WBCs associated with Hadley circulation & midlatitude jets
* Buffering of warming by equatorial ocean circulation and coupling
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Some mechanistic issues in the equatorial Pacific

Are you old enough to remember this look of Eos?

Eos, Vol. 91, No. 16, 20 April 2010

EOS, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION

DiNezio, Clement, Vecchi

VOLUME ST NUMBER 16
20 APRIL 2010

PAGES 141-152

Reconciling Differing Views
of Tropical Pacific Climate Change

PAGES 141-142

Recent analyses of global warming pro-
jections simulated with global climate mod-
els (GCMs) suggest that the tropical Pacific
does not become El Nifo- or La Nina-like
in response to increased greenhouse gases
(GHGs). Rather, the physical mechanisms that
drive tropical Pacific climate change depart
substantially from the El Nifio-Southern
Oscillation (ENSO) analogy often invoked
for interpreting future climate changes [e.g.,
Knutson and Manabe, 1995; Meehl and Wash-
ington, 1996; Cane et al., 1997, Collins et al,,
2005; Meehl et al., 2007, Lu et al., 2008; Cox
et al,, 2004] and past climate changes [e.g.
Lea et al., 2001; Koutavas et al., 2002). This
presents an opportunity for reconciling the-
ory, models, and observations.

An ENSO analogy typically is invoked for
interpreting tropical Pacific climate change
because if an external forcing introduces
some east-west asymmetry, this asymmetry
can be amplified in the same way as inter-
annual perturbations are, through the posi-
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The projected changes in thermocline
depth are consistent with the equilibrium
response to weaker trade winds, consist-
ing of a zonal mean shoaling of the ther-
mocline in response to the curl of the
wind, in addition to the relaxation of
the thermocline tilt [Cane and Sarachik,
1981; Clarke, 2010]. In the eastern equato-
rial Pacific, the zonal mean shoaling of
the thermocline opposes the deepening
due to a relaxed tilt, thereby limiting the
coupling between changes in winds and
sea surface temperature (SST). In addi-
tion to this response, increased thermal
stratification enhances ocean dynami-
cal cooling [DiNezio et al., 2009] in the
eastern basin, putting a brake on SST
growth. The increased stratification can
be attributed to weaker warming in the
subtropical oceans [i.e., Seager and Mur-
tugudde, 1997]; however, these mecha-
nisms have not been extensively explored
in controlled numerical experiments
with IPCC-class coupled GCMs. Because
of the weaker Bjerknes feedback, atmo-

Though some questions about the true
sensitivity of the hydrological cycle to green-
house forcing remain [Wentz et al., 2007),
itis clear that there are other constraints
on the strength of the Walker circulation
beyond the zonal SST gradient; hence, a
weakened SLP gradient does not necessarily
rule out a strengthened SST gradient.

Reconciling SST and SLP Observations

These concepts have implications for
interpreting observations. The few available
data sets suggest a reduction of about 5% in
the zonal SLP gradient [Vecchi et al., 2006;
Bunge and Clarke, 2009] and a zonal mean
shoaling and relaxation of the thermocline
tilt [Vecchi et al., 2006; Zhang et al., 2008].
However, there has been much debate as to
the observed change in SST gradient [Cane
et al., 1997; Vecchi et al., 2008] because
the different SST reconstructions do not
agree in the sign of the east-west gradient
changes for the twentieth century, even
during the satellite era [Vecchi et al., 2008].
According to the climate models, though,
any of the SST reconstructions could be
physically consistent with the observed
changes in SLP (see Figure Sl in the elec-
tronic supplement) when the ENSO analogy
is relaxed.
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The projected changes in thermocline
depth are consistent with the equilibrium
response to weaker trade winds, consist-
ing of a zonal mean shoaling of the ther-
mocline in response to the curl of the
wind, in addition to the relaxation of
the thermocline tilt [Cane and Sarachik,
1981; Clarke, 2010]. In the eastern equato-
rial Pacific, the zonal mean shoaling of
the thermocline opposes the deepening
due to a relaxed tilt, thereby limiting the
coupling between changes in winds and
sea surface temperature (SST). In addi-
tion to this response, increased thermal
stratification enhances ocean dynami-
cal cooling [DiNezio et al., 2009] in the
eastern basin, putting a brake on SST
growth. The increased stratification can
be attributed to weaker warming in the
subtropical oceans [i.e., Seager and Mur-
tugudde, 1997]; however, these mecha-
nisms have not been extensively explored
in controlled numerical experiments
with IPCC-class coupled GCMs. Because
of the weaker Bjerknes feedback, atmo-

Though some questions about the true
sensitivity of the hydrological cycle to green-
house forcing remain [Wentz et al., 2007),
it is clear that there are other constraints
on the strength of the Walker circulation
beyond the zonal SST gradient; hence, a
weakened SLP gradient does not necessarily
rule out a strengthened SST gradient.

Reconciling SST and SLP Observations

These concepts have implications for
interpreting observations. The few available
data sets suggest a reduction of about 5% in
the zonal SLP gradient [Vecchi et al., 2006;
Bunge and Clarke, 2009] and a zonal mean
shoaling and relaxation of the thermocline
tilt [Vecchi et al., 2006; Zhang et al., 2008].
However, there has been much debate as to
the observed change in SST gradient [Cane
et al., 1997; Vecchi et al., 2008] because
the different SST reconstructions do not
agree in the sign of the east-west gradient
changes for the twentieth century, even
during the satellite era [Vecchi et al., 2008).
According to the climate models, though,
any of the SST reconstructions could be
physically consistent with the observed
changes in SLP (see Figure Sl in the elec-
tronic supplement) when the ENSO analogy
is relaxed.

Normal condition

Climate change
(atmospheric perspective)

Weakening Walker Cell
Further the El Nifo-like pattern

Schematic* from Lian ez a/. (2018)
* I added the EUC.

Climate change
(oceanic perspective)

Strengthening SSTG

Further the La Nifia-like pattern



Some mechanistic issues in the equatorial Pacific

Are you old enough to remember this

EOS, TRANSACTIONS, AMERICAN GEOPHYSICAL U/

Reconciling Diffi
of Tropical Pacifi

PAGES 141-142

Recent analyses of global warming pro-
jections simulated with global climate mod-
els (GCMs) suggest that the tropical Pacific
does not become El Nifo- or La Nina-like
in response to increased greenhouse gases
(GHGs). Rather, the physical mechanisms that
drive tropical Pacific climate change depart
substantially from the El Nifio-Southern
Oscillation (ENSO) analogy often invoked
for interpreting future climate changes [e.g.,
Knutson and Manabe, 1995; Meehl and Wash-
ington, 1996; Cane et al., 1997, Collins et al,,
2005; Meehl et al., 2007, Lu et al., 2008; Cox
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Lea et al., 2001; Koutavas et al., 2002). This
presents an opportunity for reconciling the-
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An ENSO analogy typically is invoked for
interpreting tropical Pacific climate change
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some east-west asymmetry, this asymmetry
can be amplified in the same way as inter-
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wind, in addition to the relaxation of
the thermocline tilt [Cane and Sarachik,
1981; Clarke, 2010]. In the eastern equato-
rial Pacific, the zonal mean shoaling of
the thermocline opposes the deepening
due to a relaxed tilt, thereby limiting the
coupling between changes in winds and
sea surface temperature (SST). In addi-
tion to this response, increased thermal
stratification enhances ocean dynami-
cal cooling [DiNezio et al., 2009] in the
eastern basin, putting a brake on SST
growth. The increased stratification can
be attributed to weaker warming in the
subtropical oceans [i.e., Seager and Mur-
tugudde, 1997]; however, these mecha-
nisms have not been extensively explored
in controlled numerical experiments
with IPCC-class coupled GCMs. Because
of the weaker Bjerknes feedback, atmo-
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These concepts have implications for
interpreting observations. The few available
data sets suggest a reduction of about 5% in
the zonal SLP gradient [Vecchi et al., 2006;
Bunge and Clarke, 2009] and a zonal mean
shoaling and relaxation of the thermocline
tilt [Vecchi et al., 2006; Zhang et al., 2008].
However, there has been much debate as to
the observed change in SST gradient [Cane
et al., 1997; Vecchi et al., 2008] because

the different SST reconstructions do not
agree in the sign of the east-west gradient
changes for the twentieth century, even
during the satellite era [Vecchi et al., 2008].
According to the climate models, though,
any of the SST reconstructions could be
physically consistent with the observed
changes in SLP (see Figure Sl in the elec-
tronic supplement) when the ENSO analogy
is relaxed.
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Recent analyses of global warming pro-
jections simulated with global climate mod-
els (GCMs) suggest that the tropical Pacific
does not become El Nifo- or La Nina-like
in response to increased greenhouse gases
(GHGs). Rather, the physical mechanisms that
drive tropical Pacific climate change depart
substantially from the El Nifio-Southern
Oscillation (ENSO) analogy often invoked
for interpreting future climate changes [e.g.,
Knutson and Manabe, 1995; Meehl and Wash-
ington, 1996; Cane et al., 1997, Collins et al,,
2005; Meehl et al., 2007, Lu et al., 2008; Cox
et al,, 2004] and past climate changes [e.g.
Lea et al., 2001; Koutavas et al., 2002). This
presents an opportunity for reconciling the-
ory, models, and observations.

An ENSO analogy typically is invoked for
interpreting tropical Pacific climate change
because if an external forcing introduces
some east-west asymmetry, this asymmetry
can be amplified in the same way as inter-
annual perturbations are, through the posi-
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wind, in addition to the relaxation of
the thermocline tilt [Cane and Sarachik,
1981; Clarke, 2010]. In the eastern equato-
rial Pacific, the zonal mean shoaling of
the thermocline opposes the deepening
due to a relaxed tilt, thereby limiting the
coupling between changes in winds and
sea surface temperature (SST). In addi-
tion to this response, increased thermal
stratification enhances ocean dynami-
cal cooling [DiNezio et al., 2009] in the
eastern basin, putting a brake on SST
growth. The increased stratification can
be attributed to weaker warming in the
subtropical oceans [i.e., Seager and Mur-
tugudde, 1997]; however, these mecha-
nisms have not been extensively explored
in controlled numerical experiments
with IPCC-class coupled GCMs. Because
of the weaker Bjerknes feedback, atmo-

These concepts have implications for
interpreting observations. The few available
data sets suggest a reduction of about 5% in
the zonal SLP gradient [Vecchi et al., 2006;
Bunge and Clarke, 2009] and a zonal mean
shoaling and relaxation of the thermocline
tilt [Vecchi et al., 2006; Zhang et al., 2008].
However, there has been much debate as to
the observed change in SST gradient [Cane
et al., 1997; Vecchi et al., 2008] because

the different SST reconstructions do not
agree in the sign of the east-west gradient
changes for the twentieth century, even
during the satellite era [Vecchi et al., 2008].
According to the climate models, though,
any of the SST reconstructions could be
physically consistent with the observed
changes in SLP (see Figure Sl in the elec-
tronic supplement) when the ENSO analogy
is relaxed.
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dependence on ocean model

resolution. 'T'his is an example
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tncreased from CMIP3 to
CMIP6, the EUC bhas sped up,
as predicted, but it is still too
slow (Karnauskas et al. 2020).
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But the mean state does not tell the whole story. An analysis of CNMIP5 models revealed that conpled
models (and even OGCMs without ocean data assimilation) have the wrong relationship between
gonal wind and EUC velocity in the eastern equatorial Pacific (Coats and Karnauskas 2018).
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HADISST

Note: The width of the EUC is
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But the mean state does not tell the whole story. An analysis of CNMIP5 models revealed that conpled
models (and even OGCMs without ocean data assimilation) have the wrong relationship between
gonal wind and EUC velocity in the eastern equatorial Pacific (Coats and Karnanskas 2018).
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The instrumental records have similar global mean SST trends, but N
regional differences are large, except when the period of analysis begins
after ~1950. Unfortunately, that may be when internal variability has a
stronger influence on trends than external forcing,

Key regions identified in
The Southern Ocean is a huge question mark in the instrumental records. > recent work on Pattern

.. . . . Effect / ECS / radiative
For those who dare, it is almost entirely a product of EOF projection feedbacks are especially

' / ' ' - lagued by these issues.
(more extrapolation than interpolation). Will we ever be able to resolve this? pragned by fhese fssues

Are the instrumental records long enough to understand the role of
internal variability in the observed trends in key regions like the North
Atlantic and the tropical Pacific? Y,

We need to better understand the uncertainties in the different
instrumental records, and what methodological choices lead to differing
estimates of long-term SST trends.
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* Except for large ensembles, are historical simulations long enough in
the presence of very low frequency variability in the tropical Pacitic?

e Much work needs to be done to understand model biases and
representation of physical processes in key regions of disagreement in
terms of SST trends between instrumental records and coupled models.

* Consider other well-observed variables such as sea level (now ~30 years
of altimetry).
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Taking the Pulse of the Planet

How fast is Earth warming? Ocean heat content and sea level rise measurements may provide a more reliable answer than
atmospheric measurements.

By L. Cheng, K. E. Trenberth, J. Fasullo, J. Abraham, T. P. Boyer, K. von Schuckmann, and J. Zhu 13 September 2017 & & o o @




