



Published in the

Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society

COMMUNITY WHITE PAPER

10.5270/OceanObs09.cwp.50

#### Combining Satellite Altimetry, Time-Variable Gravity, and Bottom Pressure Observations to Understand the Arctic Ocean: A Transformative Opportunity

R. Kwok<sup>(1)</sup>, S. Farrell<sup>(2)</sup>, R. Forsberg<sup>(3)</sup>, K. Giles<sup>(4)</sup>, S. Laxon<sup>(4)</sup>, D. McAdoo<sup>(5)</sup>, J. Morison<sup>(6)</sup>, L. Padman<sup>(7)</sup>, C. Peralta-Ferriz<sup>(6)</sup>, A. Proshutinsky<sup>(8)</sup>, M. Steele<sup>(9)</sup>



#### Mean Dynamic Ocean Topography of the Polar Oceans From CryoSat-2 (2011-2016)



FIG. 5-29. Dynamic ocean topography from *CryoSat-2*. (a) Arctic Ocean [after Kwok and Morison (2015)]; (b) Southern Ocean [after Armitage et al. (2018)]



#### Separation of sea surface returns from ice-covered oceans

#### Satellite Altimetry

- Conventional open-ocean processing fails in the presence of sea ice
- Identify returns from narrow openings to measure SSH
- Surface scattering is highly inhomogeneous
  - Leads appear very bright (mirror-like)
  - Ridges/deformation features
- SSH retrieval based on received pulse properties



# Current dedicated ice missions

- Launched Apr 2010
- Profiling <u>radar</u> altimeter (single beam)
- Coverage to 88°
- Launched Oct 2018
- Multiple beam <u>lidar</u>
- Coverage to 88°



CryoSat-2

# Satellite Ice Missions generally focussed on retrieving Sea Ice Freeboard from Ice and Sea Surface Heights





# CryoSat-2 (Delayed-Doppler Processing)

- •Radar: 13.575 GHz
- Pulse repetition frequency: 18.181 kHz in SAR and SIN mode
- Pulse Bandwidth: 320 MHz (Range resolution: 46.8 cm)
- \*Range sampling (in SAR): 0.2342 m
- •(beam width: 70-110 urad)
- •Pulse limited footprint: 313 by 1670 m
- Satellite
  - Inclination: 92 deg
  - Altitude: 717 km
  - \*Launched: Apr 2010



#### CRYOSAT-2: Data from the Ross Ice Shelf, Antarctic



Source: ESA/UCL



#### **Multibeam Photon Counting Altimetry**







#### Multibeam Photon Counting Altimetry







0.7 m pulse repetition

Height estimate for every detected photon event!





#### **Height Precision**









#### **CRYO2ICE Operations**

August 04, 2020 February 10, 2022)

**CryoSat-2/ICESat-2 Resonance Orbits:** 

CryoSat-2 and ICESat-2 passed over coincident polar areas at approximately the same time every 19 orbits, roughly every 31 hours.

30 semi-synchronous orbits over Arctic

Ocean







#### CRYO2ICE: the great ones



### CRYO2ICE: the good ones





# SSHA count

From *Bagnardi et al.*, GRL, 2021



# NASA

# Arctic Ocean Mean DOT (Oct-2018 – Feb-2022)





# Monthly Mean DOT time series







#### Arctic Ocean Mean DOT (Oct-2018 – Feb-2022)





# Dynamic Heights (1950-89) and ICESat/CryoSat-2 DOT (2004-19) Anomalies Relative to Time-averaged Patterns shown here



The mean of 2004-19 annual Feb-April DOT (right) is similar to the 1950-89 mean winter DH (left) but the Beaufort Gyre is smaller and more intense, and the Eurasian Basin low is distinct, larger and deeper.

Source: Incidence of the Cyclonic Mode of Arctic Ocean Surface Circulation (Morison, 2022)



# Southern Ocean Mean DOT (Oct-2018 – Feb-2022)







# Summary Remarks

- SSH Retrievals over ice-covered oceans
  - Current dedicated sea ice missions (CryoSat-2, ICESat-2)
  - Also Altika, Sentinel 3
  - Envisat (2002-2012), ICESat (2003-2009)
- ICESat-2 (Oct 2018-present)
  - SSH over open and ice-covered Products (Orbit and Gridded)
  - Available at NSIDC
- Upcoming
  - SWOT (Launch: Nov 2022), Cristal (~2030)
- Current work
  - document variability and accuracy of products.
  - Coastal altimetry (ICESat-2 resolution)
- SSH of ice-covered ocean
  - standard products Space Agencies



#### Dynamic height vs Dynamic Ocean Topo



Figure 7. Arctic Ocean dynamic height (DH) versus monthly mean dynamic topography. (a) Locations of hydrography-derived DH estimates (relative to 500 dbar) in 2011, 2012, and 2013. (b) DH from hydrography versus monthly DOT from CS-2 at the 2008 hydrographic stations. Monthly DOTs have been smoothed with a 100 km Gaussian kernel.