Impacts of a Weakened Atlantic Meridional Overturning Circulation on Tropical Cyclone Activity in a Warming Climate

Emma L. Levin¹, Joshua Studholme¹, Alexey Fedorov^{1,2}, Wei Liu³, and Natalie Burls⁴

¹Yale University

²LOCEAN/IPSL Sorbonne University

³University of California, Riverside

⁴George Mason University

Background

- It remains uncertain how global TC **frequencies** will be affected by a **warmer** climate.
- The Atlantic Meridional Overturning Circulation (AMOC) is expected to slow down with increased anthropogenic forcing (Liu et al. 2020).
- But, there is a large uncertainty in the projected slowdown rate (Yin and Stouffer, 2007; Liu and Liu, 2015; Jackson and Wood, 2018).
- Understanding the role of AMOC slowdown in TC genesis helps constrain future TC changes.

<u>Approach</u>

- Weak (wk) AMOC: RCP8.5 CCSM4 model simulation
- Fixed (fx) AMOC: RCP8.5 CCSM4 model simulation
 - From Liu et al. 2020
 - Artificially fix AMOC strength by removing freshwater in the NA (dehosing)
- Both simulations are global warming scenarios (2075-2100)
- ~1° resolution

Genesis Potential Index (GPI) climatology

Changes in 2075-2100 GPI with a Weakened AMOC

Overall: patterns across different GPIs appear qualitatively similar, but vary slightly quantitatively.

North Atlantic: Increase in GPI near the Southeastern U.S.

Western North Pacific: Equatorial shift in ITCZ, decrease in GPI.

Eastern North Pacific: Equatorial shift in ITCZ, decrease in GPI.

Western South Pacific: Equatorial shift in GPI, and an overall increase in GPI.

Western South Indian: Poleward shift in GPI.

Log Decomposition of GPI Change (wk-fx)

```
[GPI\_term]_{wk} - [GPI\_term]_{fx} = ([vort\_term]_{wk} - [vort\_term]_{fx})
                              -([chi\_m\_term]_{wk} - [chi\_m\_term]_{fx})
                             +([PI\_term]_{wk} - [PI\_term]_{fx})
                              -([shear\_term]_{wk} - [shear\_term]_{fx})
             GPI term:
                             log(GPI)
          shear_term:
                            4\log(25 \, ms^{-1} + shear)
                            2log\{MAX[(PI - 35 ms^{-1}), 1]\}
              PI term:
                             \frac{4}{3}log(\chi)
          chi m term:
                             3\log(|vort|)
             vort term:
```

This allows us to understand the relative contribution of each term to the overall change in GPI. From Emanuel, 2010

Log Decomposition Results

Changes in U850 and U250 Winds with a Weakened AMOC

Significant changes in **upper level winds** drive changes in **shear**.

Average Basin GPI Changes with a Weakened AMOC

North Atlantic: Overall pronounced decrease in GPI.

<u>Eastern North Pacific</u>: Overall decrease in GPI; large relative decrease.

Western North Pacific: Overall decrease in GPI; smaller relative decrease than Eastern North Pacific.

Western South Pacific: Only basin with an absolute and relative increase in GPI.

Western South Indian: Overall negligible change in GPI.

Net Impact of Log Decomposition

Summary

In a warming climate, with a weakened AMOC in comparison to a fixed AMOC ...

- TC genesis is reduced in the Northern Hemisphere.
- TC genesis is spatially shifted in all basins.
 - A notable coastal increase in TC genesis is near the Southeastern US.
- Changes in Potential Intensity contribute to the overall decrease in TC genesis, while changes in wind shear (especially upper-atmosphere winds) contribute to the GPI spatial shifting.

AMOC weakening is an important factor for future TC projections!

Thank you!

Questions/comments?

emma.levin@yale.edu

Additional slides

$$GPI = \left| 10^5 vort \right|^3 \times \left(\frac{\mathcal{H}}{50} \right)^3 \times \left(\frac{PI}{70} \right)^3 \times (1 + 0.1 shear)^{-2}$$

Emanuel and Nolan, 2004

