Global physical and biogeochemical modeling & predictions: capabilities & challenges

Matthew C. Long National Center for Atmospheric Research

April 13, 2022

www.anthropocenemagazine.org

Acknowledgements

Steve Yeager (NCAR)

Colleen Petrik (Scripps)

Ping Chang (TAMU)

Kristen Krumhardt (NCAR)

Zhuomin Chen (UCAR)

Samantha Siedlecki (UCONN)

Increasing risk associated with climate warming

(b) Reasons for Concern (RFC)

IPCC, 2022

Earth System Models: holistic representations of climate-biosphere interactions

Bonan & Doney, Science (2019)

Intrinsic variability affects near-term outcomes

Intrinsic variability contributes to future climate outcomes

Long, unpublished

Finding forced trends in ocean oxygen

CESM Large Ensemble: Linear trends in 200 m dissolved oxygen (2006–2055)

$$\psi_i(t,x) = \widetilde{\psi}_i(t,x) + \psi^s(t,x) \qquad \qquad \widetilde{\psi}_i(t,x) \qquad \qquad \psi^s(t,x) = \frac{1}{m} \sum_{i=1}^m \psi_i(t,x)$$

Inspired by Deser et al.

The climate system is highly dynamic

Intrinsic variability affects near-term outcomes

Long, unpublished

Initialized prediction

Kirtman, Power, et al. IPCC (2013)

Initialization

Memory in the climate system

Predictability limits in the context of external forcing

Robust skill of decadal climate predictions

Decadal Climate Prediction Project (DCPP)

- Large multi-model ensembles enable reduction in noise necessary to achieve skillful prediction.
- Initialized DCPP ensembles exhibit robust near-term (5-10 yr) skill improvements over uninitialized projection ensembles.

Anomaly correlation coefficient: [-1, 1]

 $ACC = \frac{\sum_{i=1}^{N} (f_i - \overline{f}) (o_i - \overline{o})}{\sqrt{\sum_{i=1}^{N} (f_i - \overline{f})^2} \sqrt{\sum_{i=1}^{N} (o_i - \overline{o})^2}}$

Phase of variability in forecast (f_i) relative to observations (o_i).

> CMIP5 DCPP 8 systems N_{init}=71 N_{uninit}=56

Forecast Year 2–9 ACC for ~1965-2005

Total Skill

(a) Temperature

Impact of initialisation

(b) Temperature

(c) Precipitation

(d) Precipitation

(e) Pressure

0.9

(f) Pressure

Smith, Eade, et al., npj Clim. & Atm. Sci. (2019)

Ocean biogeochemistry & ecology predictions using Earth system models

ARTICLE

Received 10 May 2015 Accepted 18 Feb 2016 Published 30 Mar 2016

DOI: 10.1038/ncomms11076

Check for updates

Decadal predictions of the North Atlantic CO_2 uptake

Hongmei Li¹, Tatiana Ilyina¹, Wolfgang A. Müller¹ & Frank Sienz¹

OCEANOGRAPHY

Predicting the variable ocean carbon sink

H. Li¹*, T. Ilyina¹, W. A. Müller^{1,2}, P. Landschützer¹

ENVIRONMENTAL RESEARCH

Oceanic Rossby waves drive inter-annual predictability of net primary production in the central tropical Pacific

Sebastian Brune^{1,*}⁽¹⁾, Maria Esther Caballero Espejo², David Marcolino Nielsen^{1,4}, Hongmei Li³, Tatiana Ilyina³ and Johanna Baehr¹

MARINE MANAGEMENT

Seasonal to multiannual marine ecosystem prediction with a global Earth system model

Jong-Yeon Park $^{1,2,3*}\dagger,$ Charles A. Stock 2†, John P. Dunne 2, Xiaosong Yang 2, Anthony Rosati 2

Ocean Biogeochemical Predictions—Initialization and Limits of Predictability

Filippa Fransner^{1*}, François Counillon^{1,2}, Ingo Bethke¹, Jerry Tjiputra³, Annette Samuelsen², Aleksi Nummelin³ and Are Olsen¹

ARTICLE

https://doi.org/10.1038/s43247-021-00207-6 OPEN

Skilful prediction of cod stocks in the North and Barents Sea a decade in advance

Vimal Koul⊙ ^{1,2⊠}, Camilla Sguotti³, Marius Årthun⁴, Sebastian Brune², André Düsterhus⊙ ⁵, Bjarte Bogstad⁶, Geir Ottersen^{6,7}, Johanna Baehr² & Corinna Schrum^{1,2}

Skilful decadal-scale prediction of fish habitat and distribution shifts

(b) Mark R. Payne, (b) Anna K. Miesner, (b) Noel Keenlyside, (b) Shuting Yang, (b) Stephen G. Yeager,
(b) Gokhan Danabasoglu, Daniela Matei

doi: https://doi.org/10.1101/2021.07.07.451446

Multiyear predictability of tropical marine productivity

Roland Séférian^{a,b,1}, Laurent Bopp^b, Marion Gehlen^b, Didier Swingedouw^{b,c}, Juliette Mignot^{d,e}, Eric Guilyardi^{d,f}, and Jérôme Servonnat^b

Decadal climate predictions with the Canadian Earth System Model version 5 (CanESM5)

Reinel Sospedra-Alfonso, William J. Merryfield, George J. Boer, Viatsheslav V. Kharin, Woo-Sung Lee, Christian Seiler, and James R. Christian

Community Earth System Model Prediction Experiments

	CCSM4-DP (no BGC)	DPLE	SMYLE	HRDP (no BGC)
Model - ocn - atm - Ind - ice	CCSM4 POP2 (1°, 60L) CAM4-FV (1°, 26L) CLM4 (1°) CICE4 (1°)	CESM1.1 POP2 (1°, 60L) CAM5-FV (1°, 30L) CLM4 (1°) CICE4 (1°)	CESM1.1 POP2 (1°, 60L) CAM6-FV (1°, 32L) CLM4 (1°) CICE5 (1°)	CESM1.3 POP2 (0.1°, 62L) CAM5-SE (0.25°, 30L) CLM4 (0.25°) CICE4 (0.1°)
Forcing	CMIP5 RCP4.5 (from 2006)	CMIP5 RCP8.5 (from 2006)	CMIP6 SSP3-7.0 (from 2015)	CMIP5 RCP8.5 (from 2006)
Initialization - ocn/ice - atm - Ind	Full Field CORE-FOSI (1°) CCSM4 Ensemble CCSM4 Ensemble	Full Field JRA-FOSI (1°) CESM1-LE CESM1-LE	Full Field JRA-FOSI (1°) JRA55 Reanalysis CRU-JRAv2	Full Field JRA-FOSI (0.1°) JRA55 Reanalysis HighResMIP Tier 1 (AMIP)
Hindcasts	Nov 1 st 1955-2014 (N=60) 120 months	Nov 1 st 1954-2017 (N=64) 122 months	Feb 1, May 1, Aug 1, Nov 1 1970-2019 (N=200) 24 months	Nov 1 st 1982,1984,, 2016 (N=18) 62 months
Ensemble Size	10	40	20	10
Simulation Years	6,000	26,000	8,000	930

DPLE = Decadal Prediction Large Ensemble; SMYLE = Seasonal-to-Multiyear Large Ensemble; FOSI = Forced Ocean Sea-Ice Simulation

CCSM4-DP: Skillful decadal forecasts of upper ocean heat content

Heat content anomaly, N. Atlantic Subpolar gyre (z > -275 m)

De-drifting requires removal of leadtime dependent climatology

Yeager, Karspeck, et al., J. Clim. (2012)

Yeager, Danabasoglu, et al. BAMS (2018)

Karspeck, Yeager, et al., Clim. Dyn. (2015)

DPLE: Large ensemble size needed to beat persistence forecast

Predictability for observed (O) & model (M) climate variable:

Combination of predictable signal (S) & chaotic noise (N)

$$O = S_o + N_o$$
$$M = S_m + N_m$$

Ensemble averaging to reduce noise:

$$\mathbf{M} = S_m + N_m / \sqrt{n}$$

Scaife & Smith, npj Clim. & Atm. Sci. (2018)

Yeager, Danabasoglu, et al. BAMS (2018)

Potential Predictability of Net Primary Productivity

Krumhardt, Lovenduski, et al. GBC (2020)

Skillful multiyear predictions of pH in the California Current System

Potential predictability of surface pH anomalies

Brady, Lovenduski, et al. Nat. Comm. (2020)

Thermocline oxygen concentrations are highly predictable

Anomaly correlation coefficient $[O_2]$ on $\sigma_{\theta} = 26.5$

 $[O_2]$ on σ_{θ} = 26.5 corr w/ PV

Predicting aerobic habitat

$$\Phi = \frac{O_2 \text{ supply}}{\text{Metabolic demand}} = A_o \frac{P_{O_2}}{\exp\left[\frac{-E_o}{k_B}\left(\frac{1}{T} - \frac{1}{T_{ref}}\right)\right]}$$

 P_{O_2} at constant Φ

Metabolic Index (Φ) at 200 m ACC

Metabolic Index (Φ) at 200 m Δ ACC (over persistence)

Courtesy of Zhuomin Chen

after Deutsch et al., Nature (2020)

NPP predictability in coastal North American LMEs

Seasonal to multiannual marine ecosystem prediction

Chlorophyll Prediction in GFDL model

Prediction skill arises primarily from successfully simulating the chlorophyll response to the El Niño–Southern Oscillation and capturing the winter reemergence of subsurface nutrient anomalies in the extratropics...

Park, Stock et al., Science (2019)

Seasonal-to-Multiyear Large Ensemble (SMYLE)

Courtesy of Kristen Krumhardt

The Flying Leap* 2.0: Building toward fully prognostic fish

FEISTY Total Fish Biomass Simulations

Annual mean of total fish biomass

Coefficient of variation (σ/μ) of total fish biomass

Petrik et al., Prog. Oceanog. (2019)

https://ihesp.github.io/archive

Courtesy of Jaison Kurian

HRDP: SST Anomaly Correlation

HRDP: Tropical Cyclone Frequency

Courtesy of Ping Chang & Dan Fu

A signal-to-noise paradox in climate science

Predictability for observed (O) & model (M) climate variable:

Combination of predictable signal (S) & chaotic noise (*N*)

$$O = S_o + N_o$$
$$M = S_m + N_m$$

Ensemble averaging to reduce noise:

$$\mathbf{M} = S_m + N_m / \sqrt{n}$$

High resolution (HR) vs. Low resolution (LR) variance ratio

-R ratio

log₁₀(HR/I

Chang, Zhang, et al., JAMES (2020)

Mesoscale variability drives air-sea turbulent heat flux

c) LOW RESOLUTION CESM

A signal-to-noise paradox in climate science

Ratio of predictable components: $[0, \infty]$

The discrepancy between signal-to-total variance fraction in forecasts and observations.

RPC = 1: proportion of predictable variance is the same for observations and model

RPC > 1: signal-to-noise paradox; model signal-to-noise is too weak, the proportion of predictable variance is higher in observations

(Scaife et al. 2014; Eade et al. 2014; Siegert et al. 2016; Scaife & Smith 2018; Strommen & Palmer 2018; Yeager et al. 2018; Zhang & Kirtman 2019a,b; Zhang et al. 2021; ...)

Scaife & Smith, npj Clim. & Atm. Sci. (2018)

DJFM SLP (pentadal average)

SLP skill is quite sensitive to ensemble size. DPLE skill scores are comparable to HRDP only with 40-members.

DJFM SLP (pentadal average)

High ACC in HRDP achieved with RPC~1 (in contrast to DPLE).

Note: RPC in DPLE would be even higher if ACC from HRDP were used.

$$\operatorname{RPC} = \frac{\sigma_{\operatorname{sig}}^{\operatorname{o}} / \sigma_{\operatorname{tot}}^{\operatorname{o}}}{\sigma_{\operatorname{sig}}^{\operatorname{f}} / \sigma_{\operatorname{tot}}^{\operatorname{f}}} \ge \frac{\operatorname{ACC}}{\sigma_{\operatorname{sig}}^{\operatorname{f}} / \sigma_{\operatorname{tot}}^{\operatorname{f}}}$$

wikipedia.org

1° CESM-LE: Data from a *single* variable (1920–2100)

~60 GB

Full Ensemble (1 variable)

Earth System Data Science

Discussion

Contact: mclong@ucar.edu