Overturning in the Subpolar North Atlantic

What we have learned and what we have yet to learn
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OSNAP: An international program: US, Canada, UK, Germany,
Netherlands, France and China
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Mean salinity across OSNAP West and East
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Maximum of the overturning streamfunction in density space

OSNAP Full OSNAP-East

OSNAP-West

-5
201407 201501 201507 201601 201607 201701 201707 201801 201807 201901 201907 202001 202007
Time

Shading indicates uncertainty in 30-day means obtained w/ Monte Carlo runs.
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Alternative overturning measures
across OSNAP West (Labrador Sea)
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Variability of overturning transports using GloSea5
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Simulated annual time series of MOCy (orange), MOCq (blue), and MOC. Color shading
indicates monthly standard deviation for each year. All time series have been detrended.
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Mechanism of Density Compensation in the Labrador Sea

Extension of a 2-layer model by Straneo (2006) Density compensation as function of path length
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Take-away: The density-compensating water mass transformation in the boundary current can be largely attributed
to the combined effect of direct atmospheric cooling of the relatively warm boundary current and freshening due to
interaction with the fresh waters derived from the Greenland meltwater discharge and Arctic Ocean inflow.




GSR overflow and OSNAP East variability
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Current-meter-based monthly time series of volume
transports across GSR. All values are in Sv. Black line
shows time series with 25-month triangular filter.

30-day mean transports for the lower layer at
OSNAP East (black line) and GSR (magenta line),
and their difference (blue line). Shading
indicates uncertainty. Layers are separated by

Bringedal et al. 2018 the isopycnal of the AMOC at OSNAP East, ooc-

Petit et al. 2020



OSNAP East transformation and volume budget
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Volume budget of upper (red) and lower
(blue) layers between GSR and OSNAP East

Transformation to o,,oc (27.55 kg m3),
derived from averaged heat and freshwater

fluxes of ERA5 and NCEP.

Blue circle: volume of water from upper layer to lower layer estimated
from volume budget of lower layer.

Red circle: Volume of water from upper layer to lower layer estimated
from volume budget of upper layer.

Petit et al. 2020 Black circle: volume of water from upper layer to lower layer estimated
from averaged transformation across c,,q.



OSNAP East volume budget using ocean reanalyses

Elements of lower limb budget:

Gray: d(volume)/dt of lower limb

Black: Transformation to oy,oc from
surface buoyancy forcing

Red: Divergence of lower limb (OSNAP
East minus overflow across GSR)

Blue: Residual

Take-away: In the mean,the
difference between surface-
forced transformation and net
outflow is < 1 Sv.
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Toward the optimization of the
OSNAP array
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3. Capturing temporal variability of the NAC
across OSNAP East is critical to measuring
MHT and, to some extent, MFT.

correlation
© © 9o
S (4] (=]
T T
correlation

o
w

0.2+
°1- OSNAP West o1 OSNAP East
°Tew s o2 w4 ; oW s 2 s 2 15 10 Majumder, Lozier and Liin prep




Summary

e OSNAP shows dominance of overturning from Greenland to Scotland, rather than overturning
across the Labrador Sea, over the six years of observations.

e Density compensation in the Labrador Sea is compatible with weak overturning, and highlights
the importance of freshwater forcing in that basin. Idealized modeling study suggests that
compensation is due to the offset of surface cooling by input of fresh coastal waters.

e Overturning in the Irminger and Iceland basins is a major contributor to the AMOC and can be
accounted for in the mean by surface transformation. Storage of newly formed deep waters shows
sizeable interannual variability.

¢ Spread of DSOW and ISOW are remarkably different in the subpolar North Atlantic. ISOW
spreads southward along multiple pathways, including those to the east of the Mid-Atlantic Ridge.

e Study of OSNAP optimization is ongoing. Array design depends on whether MOC, MHT and/or
MFT is prioritized.



Summary, continued

e Anomalies in a single boundary current do not capture a meaningful amount of AMOC
variability, particularly in the Labrador Sea. See Li et al. 2021.

¢ The link between convection in the interior and boundary current anomalies is not
straightforward. Anomalies found in the boundary current can be imported from upstream,
created due to exchange w/ the interior and formed in the boundary current. See Li et al.
2021 and Menary et al. 2020.

¢ Transformation of surface waters in the Iceland and Irminger basins depends upon surface
outcrop area and buoyancy forcing, with the former playing a larger role in setting
interannual to decadal variability. See Petit et al. 2021.

Note: Please see Yao Fu’s poster on the OSNAP MOC, MHT and MFT seasonality.



What we (actually, 1) don’t know

e Is the ~ 6 yr OSNAP period representative of MOC, MHT and MOC variability on
longer time scales?

e How will ice/glacial melt impact overturning in the subpolar North Atlantic in the
years and decades ahead? What might its differential impact be for OSNAP East and
West?

e How quickly will changes in deep water formation be communicated downstream to
lower latitudes? [We still don’t know the time scale for meridional coherence based on
observations.]

e How will changes in the AMOC impact the uptake of anthropogenic CO,?

e Why is there (still) such a spread in the AMOC response among climate models?



