Machine learning is a useful tool to predict and
understand sea-ice motion.
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Evaluation of GFDL coupled climate models for western Arctic seasonal heat budgets
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While the Chukchi Sea plays a critical role in modulating the heat content of Pacific Water
subducted into the Beaufort Gyre halocline on seasonal timescales, inconclusive observational
evidence leaves the Chukchi Sea’s role in this heat transport unclear.
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Evaluation of GFDL coupled climate models for western Arctic seasonal heat budgets
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Simulated transports and fluxes are low relative to the
observational estimate, however there is improved
agreement between the observational estimates and the
High Resolution simulation.

Qsyrface: Surface Winds

Chukchi and Beaufort Mean Wind Speed Bias
0 6Relative to ERA5 [65°N,180° W —80°N, 120° W]

—CMAPl  ersies CM4 Historical - High Res Pl

0.4
021+

0.0

[m/s]

-0.2

-0.4

-0.6

For all three
simulations,
surface wind
speed biases are
weaker in summer
when air-sea heat
fluxes are

4 2 0 2 4

Strongest Wind Speed Bias [m/s]

malberty@princeton.edu




Gateway to the gateway to the Arctic:
Oxygen export from the Labrador Sea
Jannes Koelling (j.koelling@dal.ca)
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* Oxygen measurements at 53N

* Increased oxygen levels due to direct export of recently
convected Labrador Sea Water

* 1.6 Tmol/year of southward oxygen export from newly
ventilated LSW (50% of interior uptake)
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* Convection in boundary current as well as interior

* Impacted by input of cold, fresh, high-oxygen water
from the Arctic near the surface
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3D reconstruction of upper ocean dynamics in the Nordic and Beaufort Seas.
Assessment of the Surface Quasi-Geostrophic Approach
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> OBIJECTIVE - See if surface information may
be used to reconstruct 3D ocean dynamics in

two key areas of the Arctic Ocean > METHOD -> Surface Quasi-Geostrophy (eSQG)

* Reconstruction from SSH :

* Reconstruction from SSV:
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3D reconstruction of upper ocean dynamics in the Nordic and Beaufort Seas.

Assessment of the Surface Quasi-Geostrophic Approach

»Reconstruction form SSH and model
geostrophic current, show good agreement

(corr.>0.8) up to 400 meters.

»Reconstruction from SSV and model total
currents, exhibit fairly good agreement

(corr.>0.6) up to 200 meters.

»Reconstructions are better in the winter and
spring when the water column is less stratified
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foward underStandmg feture = + Existing CMIP models tend to

development of Arctic using FESOM2 ~ / ~ N\=  underestimate the strength of
AT mesoscale eddies.

Xinyue Li*, Qiang Wang, Nikolay Koldunov, Dmitry Sidorenko, '., . \ ‘ \
Thomas Jung, Sergey Danilov, Vasco Mdiller —EEETT ] \a=
*Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research = 2 ¥} = We planned to apply the 4.5-
- Arctic sea ice extent ) 1km grid of FESOMZ2.
Obs. Mar. WS = . .
16 ; / + Arctic sea ice is expected to

decline in the future, somehow

14l 7 - *—E‘W affecting strength of future
Beaufort flows.

FESOM2
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* In this recent study, high resolution model
(1km) clearly captures more eddy activities
than low resolution model.

» Stronger eddy activity in summer compared
e NS to winter reflects role of Arctic sea ice
AT S change.

Figure from (Manucharyan and Thompson, 2022)
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» Using 4.5km resolution model, T
changes of Arctic eddy activities can

still be observed.

* In 2100, sea ice may be largely
receding, Arctic eddy activities would
be greatly enhanced. These results

contribute to simulations applying

future 1km grids. 000 ~7.16 533 -349 -165 018 202 386 569 7.53
4.5km fesom?2 vorticity x10°¢
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Oceanic Fluxes Across Arctic Gateways in the

Regional Arctic System Model (RASM)
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Case

CESM-LR CESM-HR RASM-1deg RASM-9km RASM-2km
Name (Experiment) CESM1-CAMS5-SE-LR CESMI1-CAMS5-SE-HR R2200tGcdaa0lf R2200rGcsph02f R2300uGcspnO1f
P (hist-1950) (hist-1950) (hindcast) (hindcast) (hindcast)
i >
Horizontal Res:ﬁ::‘;:;‘:’;é_ ‘:’z:) 7.8 ~72 km 2.7~7.0 km 7.8 ~72 km 8.5~93 km 21~23km
Max. (Mean) (45 km) (5.0 km) (45 km) (9.2 km) (2.3 km)
Vertical # of Ocean 60 62 60 45 45
Atm.-Ocean-ice-Land Models CAM52-POP2-CICE4-CLM4 POP2-CICE6 (JRA55-do)
(forcing)
BS 0.77 1.41 0.65 0.70 0.65
Net Volume Flux BSO 191 4.04 0.70 2.89 2.59
(Sv=10¢ m3/s) DS .49 -2.79 a2 172 234
FS -1.18 -2.61 -0.14 -1.86 -0.86
Arctic Ocean Heat Convergence 64 196 54 6 104

(TW)




Net Vol. Flux (Sv)
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Arctic Sea Ice Extent
Summary & Future Research

e CESM-HR
RASM-8km

N NS|oc - Net volume fluxes across the Arctic main

y V \ gateways varies between the simulations; the
i higher resolution, the larger fluxes across the
0w © = s W gateways.

" - CESM high resolution simulation may
overestimate heat fluxes into the Arctic since

sea ice almost disappears during summer of
2002.

= The low resolution models exhibit lack of skills

’ representing coastal currents such as
Barent Sea Opening Flux Norwegian Coastal Current, which is critical to

understand the connection between the Arctic
RASM-1deg Mean BSO Volume Fluxes
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SIE (x10% km?)
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o I 0 ¥V  RASM- and the sub-Arctic regions.
- | mlem __ideg-m= - Hence, improved observational flux estimates
-0.210.28 Sv I 0.70,Sv : -0.28 Sv- .
" - = o = = s are necessary to constrain ocean and other
RASM-9km Mean BSO Volume Fluxes climate models.
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V  RASM- 9km - Also, Arctic-wide balanced volume exchanges
are needed across the gateways.
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Understanding circulation in the eastern
Arctic Ocean from NABOS observations

Igor Polyakov and NABOS team
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Atlantification:
Atlantic water was
~1°C warmer in the

1990s compared
with the 1970 and

0.24°C warmer in
2007 compared with
the 1990s
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New Arctic Ocean:
Sea 1ce loss due to stronger oceanic heat flux caused by
weaker stratlﬁcatlon and deep ocean winter ventilation

Heot content

2000s

Blue arrow shows
penetrative winter
ventilation to the
depths exceeding 140m.
Polyakov et al. (2020). s 2010s
B o

<0.6 Heaot content, MJ/m* >10




Increasing in time correlation between wind and upper ocean
currents/shear suggests stronger air-ice-ocean coupling
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| 999 - NPI observations
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Conclusions

* Recent loss of cold halocline layer in the eastern Eurasian
Basin makes this region similar to the western Eurasian
Basin -> “atlantification” - a fundamental step toward a
new Arctic climate state.

e Consequences include change of intensity of the upper
ocean circulation and shear.

* The role of remote and local freshwater anomalies in
establishing the observed changes in the eastern Arctic

Ocean is not well constrained.




