

Assessing cloud-aerosol interactions as a source of climate predictability

Po-Lun Ma

Atmospheric Sciences and Global Change Pacific Northwest National Laboratory

March 14, 2022

PNNL is operated by Battelle for the U.S. Department of Energy

Aerosol effects and cloud feedbacks are two major sources of climate predictability

The role of aerosols: constraining forcing and historical climate to constrain climate projections

Pacific

Northwest

Forster et al (2013)

≥ P -3 RFari ERFaci CMIP5/ACCMIP AR5 (b) 0 Forcing (W m⁻²) 1-Aerosol CMIP5 AR4, AR5 All

CMIP3-5: Stronger aerosol effects correlates with weaker total forcing and higher climate sensitivity

The role of aerosols: constraining forcing and historical climate to constrain climate projections?

Pacific

Northwest

Forster et al (2013)

≥ -3 RFari ERFaci CMIP5/ACCMIP (b) m⁻²) Forcing (W n 0 -2 CMIP5 AR4, AR5

- CMIP3-5: Stronger aerosol effects correlates with weaker total forcing and higher climate sensitivity
- CMIP6: New (no?) relationship

Energy Exascale Earth System Model (E3SM)

Golaz et al (2019)

Bellouin et al., 2020:

- -1.6 to -0.6 Wm⁻² (68% likelihood)
- -2.0 to -0.4 Wm⁻² (90% likelihood)

UPCAM ERFaci

- Ma et al. (2015)
- Increasing resolution improves small-scale meteorological features critical for aerosol-cloud interaction, increasing the agreement of cloud and precipitation susceptibility with observations even though the same physical parameterizations are used.
- Weaker ERFaci is caused by a combination of smaller fraction of raining clouds in UPCAM

How do we better integrate high-resolution-high-fidelity data/model into ESMs?

Terai et al. (2020)

weaker increase in LWP in non-raining clouds and a

Improve the representations of aerosols and cloud-Pacific Northwest aerosol interactions in E3SM NATIONAL LABORATOR

Accurate and fast simulations

Pacific

Northwest

Data-driven & physically informed **ML** emulator

Software infrastructure incorporating AI/ML in Earth system models

Improving aerosol's cloud albedo effect: Emulating aerosol activation using deep neural network Silva, Ma, Pritchard, Yu, Singh, et al.

Challenge

- Traditional parameterization neglects kinetic limitations
- Explicit parcel model calculations way too expensive to employ in Earth system models

Objective

Improve aerosol activation in E3SM by correcting the E3SM bias introduced by the original parameterization without adding computational cost

Approach

- Build ML emulators based on explicit cloud parcel model results
- Train on big data (over 100M samples)

Results

- Significant improvement on aerosol activation
- Computational cost is negligible
- Stable and more accurate global simulations
- Aerosol-induced radiative effects reduced

Silva et al (2020), Geosci Model Dev

New DNN-based activation corrects the model bias in over-predicting activation in highactivation regime

Compared to the default E3SM, DNN produces more droplets in Asia and less droplets in other mid- and high latitude regions

Improving aerosol's cloud lifetime effects: Emulating warm rain initiation using deep neural network

Ma, Pritchard, Yu, Jones, Varble, Pressel, Kaul, Rader, Fan, Shpund, Singh, et al.

Challenge

- Traditional parameterization built on single cloud regime, not suitable for global models
- · Limited predictability due to insufficient predictors

Objective

• Develop a representation of warm rain initiation (i.e., autoconversion) suitable for the global model E3SM

Approach

- Build ML emulators based on explicit collisioncoalescence calculations and environmental conditions
- Train on big data covering a wide range of aerosol, cloud, meteorological conditions

Results

- Significant improvement using the globally suitable DNN emulator
- Combination of expertise in aerosol-cloud physics and machine learning leads to big advancement in understanding and predictability via co-designing the DNN emulator

Processes not directly relevant to cloud-aerosol interactions can affect cloud-aerosol interactions!

- E3SM PPE
 - activation
 - evaporation efficiency
 - autoconversion
 - accretion
 - subgrid variability
 - convective precipitation efficiency
 - cloud phase (Tan et al., 2016)
 - PDF width
 - skewness
 - sedimentation (Ackerman et al 2004, 2009; Bretherton et al 2007; Guo et al 2011)
 - convective entrainment (Knight et al 2007; Sanderson et al 2007; Rougier et al 2009; Zhao 2014; Zhao et al 2016)

Important mechanisms
Autoconversion fraction
Cloud top entrainment
PBL decoupling
Shallow mixing efficiency

Important state variables:
Rainwater
Evaporation of cloud and rain
Aerosols
COD
Cloud top height
LCL
Subgrid variability

• PBL humidity and height

Ma et al., in prep.

Why are cloud-aerosol interactions and cloud feedbacks correlated?

CMIP6 models and E3SM PPE show a correlation between cloud feedback and aerosol forcing. •

Summary: A holistic view

- Understand the predictability source •
 - Environmental conditions
 - Turbulence
 - Humidity
 - Cloud and aerosol state and processes
 - Size distribution
 - Composition
 - Subgrid variability
 - Many others
 - Connection between cloud-aerosol interactions and cloud feedbacks

Address the predictability source •

- Increase model resolution to better resolve features relevant for cloud-aerosol interactions
 - Scale-adaptive parameterizations
- Integrate high-resolution-high-fidelity data and models into ESMs using AI/ML

Evaluate, analyze, and constrain model predictions ٠

- Process-oriented diagnostics
- Instrument simulator
- Scale consistency
- System response and feedback