

User-Tailored Climate Predictions

_

The DWD Climate Predictions Website

Birgit Mannig, Andreas Paxian, Klaus Pankatz,

Amelie Hoff, Miriam Tivig, Katja Reinhard, Katharina Isensee, Sabrina Wehring, Alexander Pasternack¹, Philip Lorenz, Frank Kreienkamp, Barbara Früh

Deutscher Wetterdienst; ¹Freie Universität Berlin

Why this website?

User-friendly information portal on climate predictions

Why this website?

User-friendly information portal on climate predictions

Who are the users?

Sector specific users, using either data and / or end results

Why this website?

User-friendly information portal on climate predictions

Who are the users?

Sector specific users, using either data and / or end results

...seamless predicton approach:

→ Timescales

Seamless Approach: Timescales

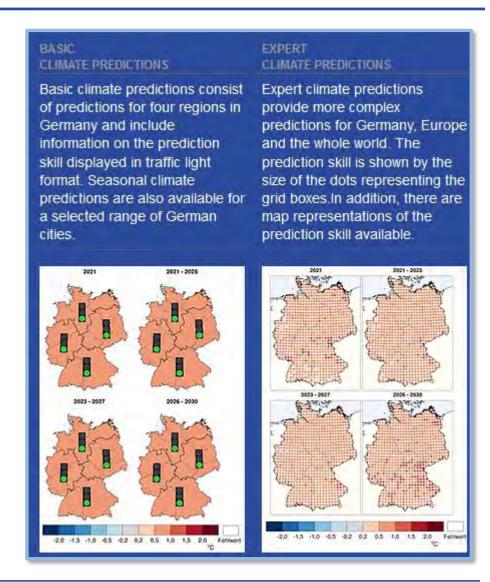
Climate predictions for three timescales

- → Decadal
- Seasonal
- → Subseasonal

weeks months years 1-3, 2-4, 1, 1-5, 3-5, 4-6 3-7, 6-10 SUBSEASONAL CLIMATE PREDICTIONS PREDICTIONS 1-6 MONTHS 3 - 6 WEEKS 1 - 10 YEARS expected 2022

https://www.dwd.de/climatepredictions

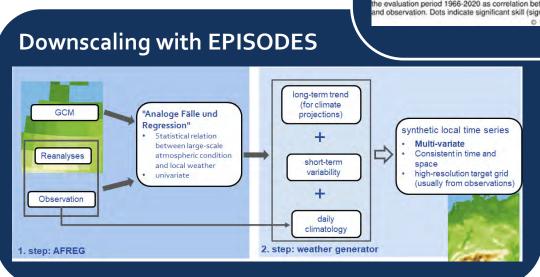
Two layers of complexity


Basic climate predictions (Germany only)

Expert climate predictions

(+ Background information)

https://www.dwd.de/climatepredictions



Three Regions (with different resolution)

- → World (5°)
- → Europe (2°)
- → Germany (~ 20km)

Additionally for basic climate predictions:
Fieldmeans of four German **Regions**

2022

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 No Gata
Negative Correlation

Prediction skill for temperature (correlation):

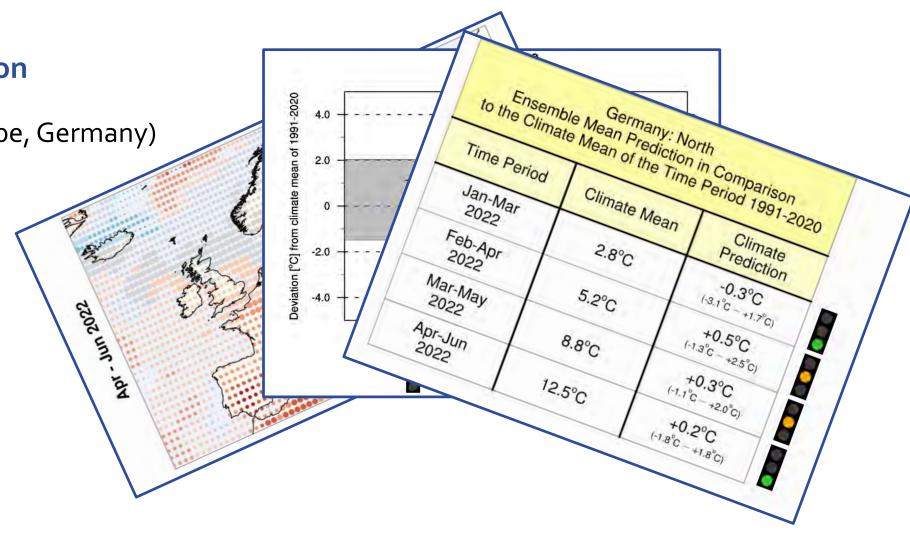
The colour represents the skill of the climate prediction (1-/5-year mean) in the evaluation period 1966-2020 as correlation between climate prediction and observation. Dots indicate significant skill (significance level of 95%).

© DWD: generated on 21 Feb 2022

Kreienkamp, F. et al., 2019

Types of Visualisation

→ Maps (World, Europe, Germany)

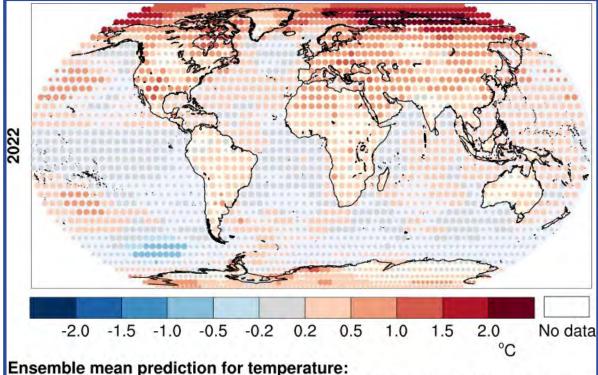

→ Timeseries

→ Tables

Variables:

- **→** Temperature
- → Precipitation

...more to come!



Prediction Types

→ Ensemble mean and probabilistic predictions

Our Principle

Combined display of prediction and skill

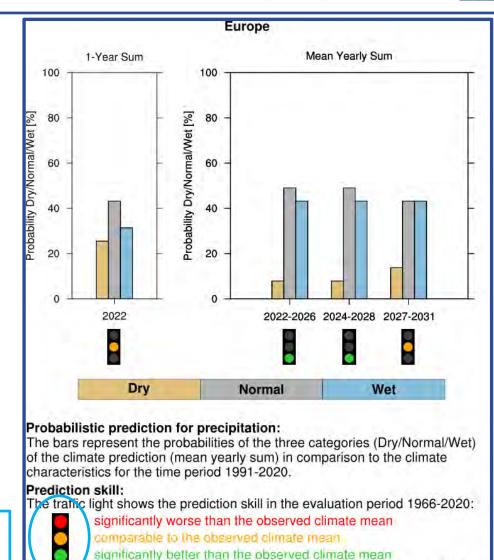
The colour represents the deviation of the ensemble mean prediction (1-/5-year mean) from the climate mean of the time period 1991-2020.

Prediction skill:

The size of the dots shows the skill in the evaluation period 1966-2020:

- significantly worse than the climate projection
- comparable to the climate projection
- significantly better than the climate projection

O DWD: generated on 21 Feb 2022


Prediction Types

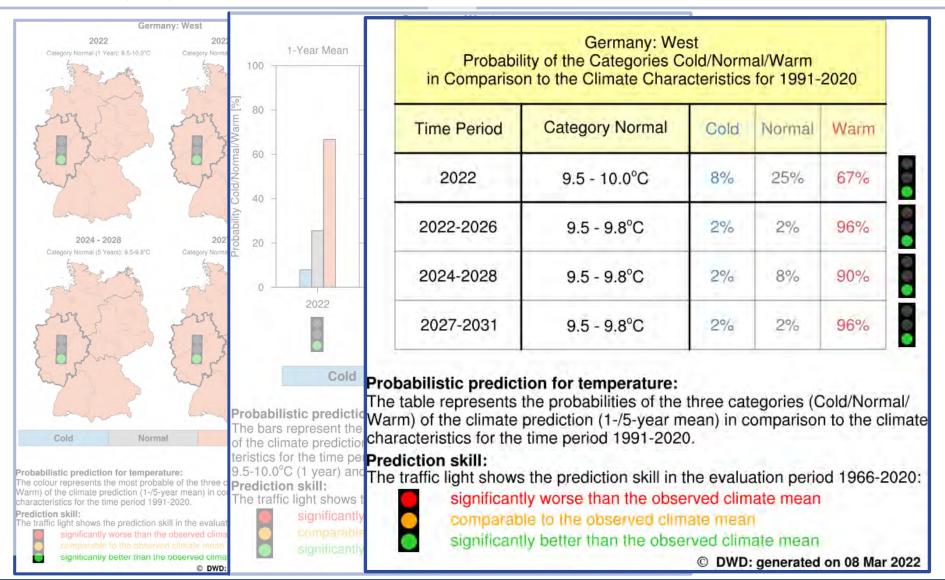
→ Ensemblemean and probabilistic predictions

Our Principle

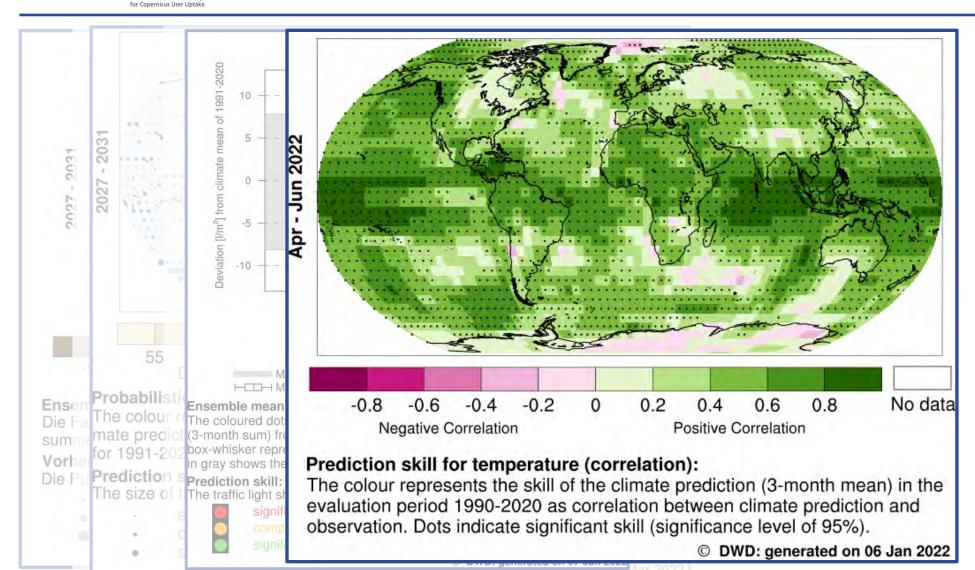
- → Combined display of prediction and skill
 - → Ensemble mean: MSESS
 - → Probabilistic predictions: **RPSS**
 - → Reference prediction: observed climate mean and climate projection (decadal predictions)
 - → Correlation maps (Category: Expert Climate Prediction Skill)

Statistical postprocessing of decadal predictions: Recalibration (Pasternack et al., 2018, 2021)

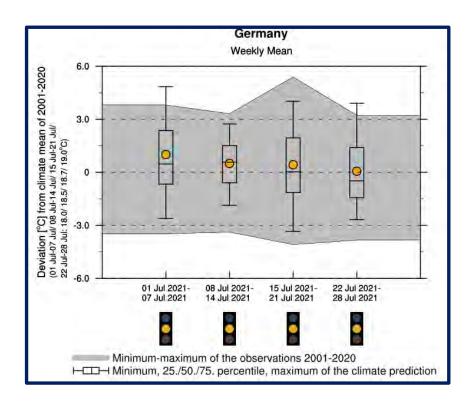
O DWD: generated on 08 Mar 2022



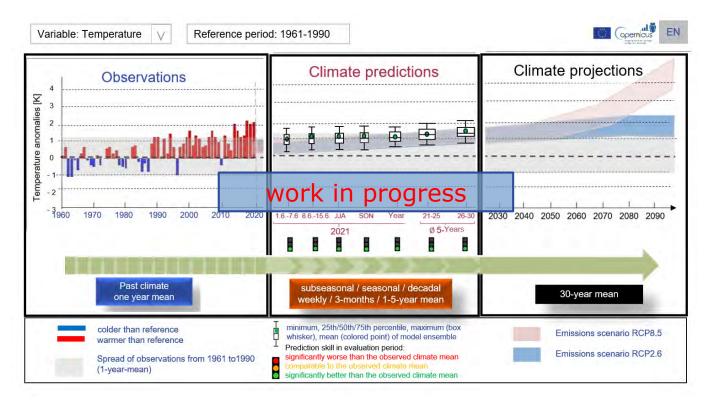
LET'S TAKE A CLOSER LOOK...



Basic probability prediction


Expert climate predictions

→ Subseasonal predictions (preoperational)


- → Subseasonal predictions (preoperational)
- → Multi-year seasonal means

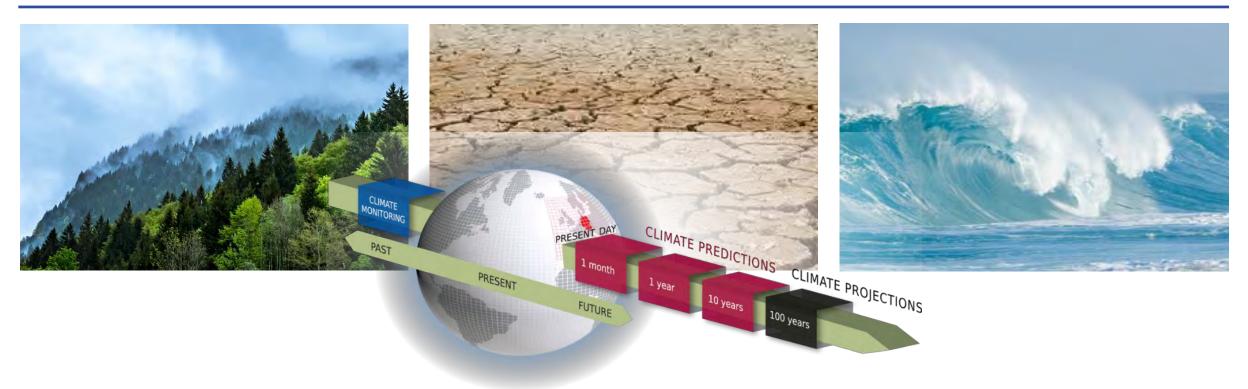
- → Subseasonal predictions (preoperational)
- → Multi-year seasonal means
- → A seamless timeseries
 - → Including observations & climate projections

- → Subseasonal predictions (preoperational)
- → Multi-year seasonal means
- → A seamless timeseries
 - → Including observations & climate projections
- → Drought indices & ENSO
- → Updated model version for our next decadal prediction in 2023
- → Multi-model ensembles

user engagement

Summary

https://www.dwd.de/climatepredictions


- → **High demand** for climate predictions on subseasonal, seasonal and decadal time scales from manifold (German) users from business, politics and society.
- → Website provides information on climate predictions which is **consistent** on three timescales and it is **developed in close collaboration with our users**.
- → Our mission: meet **users' needs**, enhance their **understanding** of climate predictions, and create awareness of the importance of the prediction skill.
- → Work in progress!

Thank you!

birgit.mannig@dwd.de

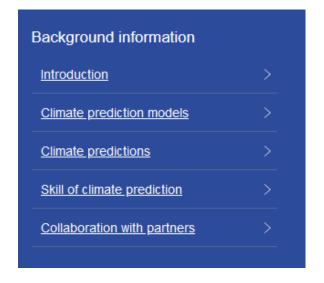
Appendix

Model Configurations (since 2021)

	Subseasonals	Seasonals	Decadals
climate model	IFS (ECMWF) ¹	GCFS2.1 (DWD) ²	MPI-ESM (DWD)
spatial resolution	~36 km	~100 km	~200 km
initializations	weekly (Mon & Thu)	monthly (1.)	yearly (Nov)
temporal coverage	46 days	6 months	10 years
prediction ensemble	51 simulations	50 simulations	16 simulations
hindcast ensemble	11 simulationen	30 simulationen	16 simulatons
available hindcasts	20 years BP	1990-today	1961-today

 $^{{\}tt ^1\!https://www.ecmwf.int/en/forecasts/documentation-and-support/extended-range-forecasts}$

³Brune, S., Nerger, L., Baehr, J. (2015). Assimilation of oceanic observations in a global coupled Earth system model with the SEIK filter. Ocean Modell. 96, 254–264. doi: 10.1016/j.ocemod.2015.09.011


²https://www.dwd.de/EN/ourservices/seasonals_forecasts/project_description.html

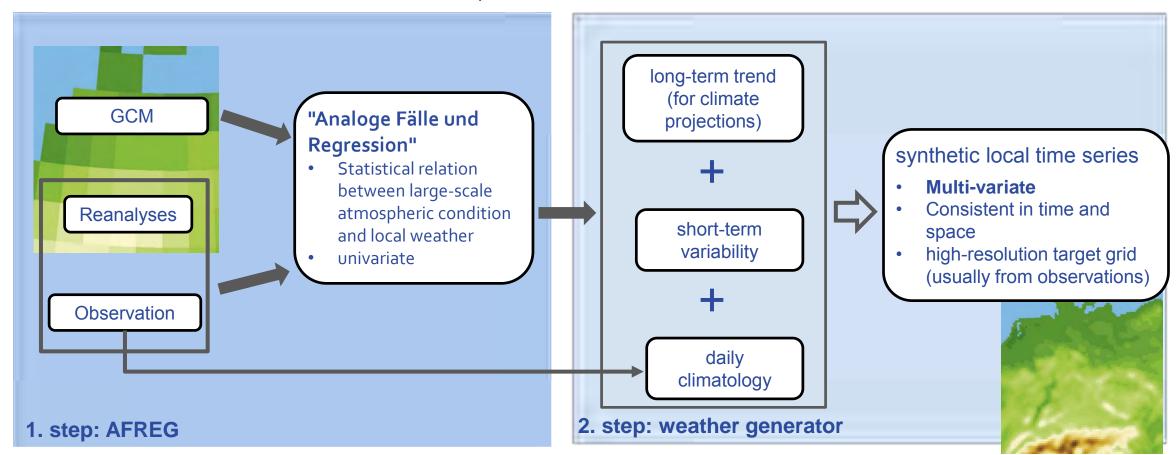
³Pohlmann, H., Müller, W.A., Kulkarni, K., Kameswarrao, M., Matei, D., Vamborg, F.S.E., et al. (2013). Improved forecast skill in the tropics in the new MiKlip decadal climate predictions. Geophys. Res. Lett. 40, 5798–5802. doi: 10.1002/2013GL058051;

Details on Predictions and Evaluations

- Observation Data: ERA5, GPCC, GPCP, HYRAS, DWD-CDC¹
- Evaluation period: dependent on available hindcasts; 1961-2020 for decadal predictions
- Skill measures:
 - Ensemble-Mean prediction: Pearson Correlation Coefficient and Mean Squared Error Skill Score (MSESS)²
 - Probability prediction: Ranked Probability Skill Score (RPSS)³
- Bootstrapping & significance test at 95% confidence level

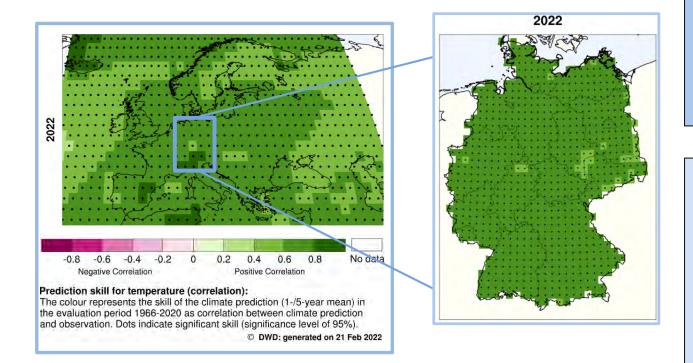
All details on our website, "Background information"

- ¹ Details: https://www.dwd.de/EN/ourservices/kvhs_en/help/1_bkqrd_info/o5_skill/start_node.html; "What observations are used for comparison?"
- ² Goddard, L., A. et al., 2013: A verification framework for interannual-to-decadal predictions experiments. Climate Dyn. 40, 245–272. DOI:10.1007/s00382-012-1481-2.
- ³ Ferro, C.A.T., Richardson, D.S., Weigel, A.P. (2008). On the effect of ensemble size on the discrete and continuous ranked probability scores. Meteor. Appl. 15, 19-24. doi: 10.1002/met.45.



EPISODES

EPISODES is an **empirical-statistical downscaling** method developed at the Deutscher Wetterdienst based on a perfect-prognosis approach. We apply it to sub-seasonal, seasonal, and decadal predictions.


Kreienkamp, F., Paxian, A., Früh, B. et al. Evaluation of the empirical-statistical downscaling method EPISODES. Clim Dyn 52, 991-1026 (2019). https://doi.org/10.1007/s00382-018-4276-2

Statistical Downscaling with EPISODES

- Empirical-statistical downscaling method
- Downscaling possible for all variables with highresolution observation data
- Preservation of skill from large-scale model

Configuration:

→ GCM: MPI/ESM - LR

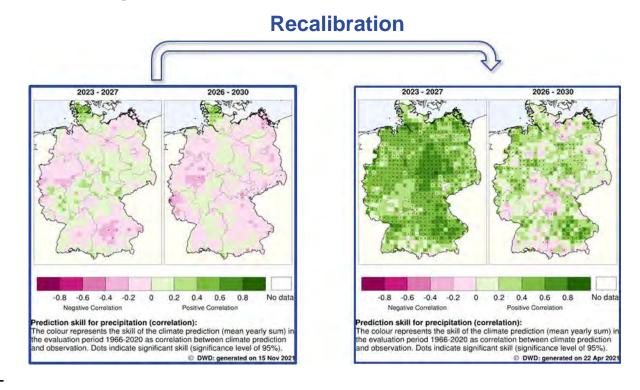
→ Reanalysis data: NCEP/NCAR

Observation Data: HYRAS¹

Spatial resolution: originally 5km

→ Regression built in timeperiod 1951-2015

1 Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., Gratzki, A. (2013). A Central European precipitation climatology - Part I: generation and validation of a high-resolution gridded daily data set (HYRAS). Meteorol. Z. 22, 235–256. doi: 10.1127/0941-2948/2013/0436



Reducing systematic errors of decadal ensemble predictions

- Recalibration method DeFoReST (Pasternack et al. 2018)
- Parametric correction of
 - → Lead-time dependent errors (drift)
 - → Start time dependent errors (trend)
 - → Conditional bias
 - → Ensemble spread
- Measurement for optimization: continuous ranked probability score (CRPS)
- → Since 2021: estimation of model coefficients by non-homogeneous boosting (Paternack et al. 2021)

A. Pasternack, H. W. Rust, J. Bhend, M. Liniger, W. A. Müller: Parametric Decadal Climate Forecast Recalibration, Geosci. Model Develop., 2018.

A. Pasternack, A., Grieger, J., Rust, H.W., Ulbrich, U. (2021). Recalibrating decadal climate predictions – what is an adequate model for the drift? Geosci. Model Dev. 14, 4335–4355. doi: 10.5194/gmd-14-4335-2021, 2021.

