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Lisa did groundbreaking work
in climate science and climate
services. She was a pioneer in
seasonal climate forecasting,
and led key research on El Nifio
and La Nifa. Her commitment
to ensuring that climate
information was accessible and
meaningful to decision makers
across the globe cannot be
overstated

--press release from IRI

Workshop on Societally-Relevant
Multi-Year Climate Predictions



Matt Newman’s invitation to Lisa to give a keynote talk on
societally relevant initialized Earth System predictions:
“Can we (and if so, how do we) push the seasonal
prediction horizon well beyond its current 6-9 months,
ideally out to at least 2 years, keeping in mind that (to
justify the inevitable expense) such forecasts need to
produce information that is of real use — hence the
“societally relevant” part of the workshop title”.

[information of “real use” indicates the
need for skillful and thus credible predictions]

Lisa did groundbreaking work

in climate science and climate Lisa’s response:

services. She was a pioneer in

seasonal climate forecasting, “There are few to no examples of people trying to use

and led key research on EINifilo  Jong term predictions currently. | would like to suggest
and La Nifia. Her commitment  3p gverview of what’s been demonstrated on
to ensuring that climate predictability (or not) of climate variability beyond the
information was accessible and .

next 3-12 months...and the ability to capture longer term

meaningful to decision makers . e
across the globe cannot be phenomenon, such as trends and decadal variability”.

overstated.
--press release from IRI [interpretation: seasonal to decadal (52D) climate

predictions]



“predictability of climate variability beyond the next 3-12 months...to
capture longer term phenomenon, such as trends and decadal variability”:

The “seasonal to decadal” (S2D) timescale

Boundary value pi

( Seasonal-to-Decadal (S2D)

«— Seasonal-to-Interannual (S2I) —

«— Subseasonal-to-Seasonal (525) — h Deep ocean/GHG emission/Land use
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ENSO/Sea-ice

Stratosphere (QBO, SSWs)

Predictability sources

MJO/NAO

Soil moisture/Sea-ice
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—>
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Timescales of prediction

S2S timescale (~ 2 weeks to 2 months), S2I timescale (~2 to 12 months),
S2D timescale (~ 3 months to ten years)

(Meehl et al., 2021: Initialized Earth system prediction from subseasonal to decadal timescales,
Nature Reviews Earth and Environment)
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A 2008 session of the Aspen Global Change Institute (AGCI) formulated the first-ever
coordinated set of decadal climate prediction experiments for the CMIP5
experimental design (convened by Meehl, Goddard, Stouffer, Murphy)

Article in Bull. Amer. Meteorol. Soc., 2009 AR‘"CLES
describing outcomes of AGCI session

3 DECADAL PREDICTION
Can It Be Skillful?

BY GERALD A. MeeHL, Lisa GODDARD, JaMEs MURPHY, RONALD ). STOUFFER, GEORGE BOER,
GokHAN DaNaeasocLy, KeimH DixoN, MArRco A. GIORGETTA, ARTHUR M. GREENE, ED HAWKINS,
GagrieLE HeGerL, Davip KaroLy, NoeL Keenwysipe, MasaHIDE KiMoTo, BeN KIRTMAN,
ANTONIO NAVARRA, ROGER PuLwARTY, Douc SMITH, DEeTLEF STAMMER, AND TIMOTHY STOCKDALE

A new field called “decadal prediction” will use initialized climate models to produce
time-evolving predictions of regional climate that will bridge ENSO forecasting and
future climate change projections.




AGCI session in 2011 convened by
Goddard, Meehl and Kirtman
assessed progress in S2D prediction
and produced two papers

BAMS, 2014 Cli. Dyn. 2013
DECADAL CLIMATE PREDICTION Clim Dyn G013 40245272

An Update from the Trenches

BY GERALD A. MeeHL, Lisa GODDARD, GEORGE BOER, ROBERT BURGMAN, GRANT BRANSTATOR,
CrristoprHE Cassou, Susanna CorTi, GokHaN DanasasocLu, FRancisco DosLas-Reves, ED Hawkins, A verification framework for interannual-to-decadal pl'CdiCtiOﬂS
Aucia Karspeck, MasaHiDe KimoTto, Arun Kumar, Daniea Mater, JuuieTTe MienoT, Rym Msapek, .
experiments

AnTonio Navarra, HoLer PoHLMANN, MicHELE RiENECKER, Tony Rosati, EDwiN ScHNEIDER, Doug SMITH,

Rowan Sutton, Haivan Tene, Geert Jan van OLDENBORGH, GABRIEL VECCHI, AND STEPHEN YEAGER
L. Goddard - A. Kumar - A. Solomon « D. Smith + G. Boer - P. Gonzalez - V. Kharin - W, Merryfield -

C. Deser + 8. J. Mason + B. P. Kirtman + R. Msadek + R. Sutton + E. Hawkins * T. Fricker + G. Hegerl +
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The rapidly evolving field of decadal climate prediction, using initialized climate models
Y. Kushnir « M. Newman - J. Carton * I. Fukumori « T. Delworth

to produce time-evolving predictions of regional climate, is producing new results for

predictions, predictability, and prediction skill.
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Prediction skill can come from the initial state or external forcing, and depends on the
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(dashed lines indicate uncertainty measured from 12 CMIP5 models; black circles indicate when decreasing
skill from the initial state crosses over increasing skill from external forcing, for upper 300m ocean layer, North
Atlantic, horizontal black dashed line indicates 90% significance level) (Branstator and Teng, 2012).



Compute anomalies
from model to
compare to obs for
skill measures:
--drifted prediction
minus long-term
mean of model drift
--drifted prediction o
minus mean of
previous 15 years
model drift

--bias adjusted
prediction minus
observation mean
--time-evolving bias
adjustment
--de-trend
everything
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Science challenge: the “signal to noise paradox”
and the need for more ensemble members

S2D predictions: NAO prediction skill, each line indicates
a different lead year range: the more ensemble
members, the higher the skill

(colored lines corresponding to statistically significant
correlations for longer lead year ranges, with largest ACC
values of 0.6 with 40 members for lead year ranges for an
average of years 2 to 8) b)

Blue dash-dot line is the mean model prediction of one
of its own ensemble members that has lower skill than
the model predicting observations: the “signal to noise

paradox”
(Athanasiadas et al., 2020, npj Clim. Atmos. Sci.)

“ensemble predictions using climate models generally show
higher correlation with observed variability than with their
own simulations, and higher correlations with observations
than would be expected from their small signal-to-noise
ratios” (Scaife and Smith, 2018)

“the signal-to-noise ratio can be too small in climate
models, requiring a very large ensemble to extract the
predictable signal” (Smith et al., 2019)

ACC

-0.1

ACC for NAO in CESM-DPLE

0 5 10 15 20 25 30 35 40
Ensemble size



The signal to noise paradox implies that there is a predictable signal from
initialized hindcasts, giving a positive correlation with observations

But the magnitude of the signal is very small and the noise is large, such that
the signal-to-noise ratio in the model is very small, and measures that include
amplitude of the signal are small (e.g. MSSS)

Methods have been proposed to boost the signal by adjusting the variance to
be close to observations, but the question remains as to why the signals in

the models are so small?
a . b
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(Smith et al., 2020, Nature)



S2D: How widespread is the signal to noise paradox (i.e. predictable
model phenomena smaller than observed)?

Calculate the ratio of predictable components (RPC);
higher RPC (darker red) above 1 indicates larger signal-to-noise paradox

Lead years 2-9
(c) Temperature RPC (d) Precipitation RPC (e) Pressure RPC

(Smith et al 2019)



Total skill
(a) Temperature

More ensemble members
are better to refine the
small predictable signal

(c) Precipitation

Multi-model ensemble,
7 models, from CMIP5

Correlation for lead year 2-9
initialized hindcasts

(Smith et al., 2019, jpj Clim. Atmos. Sci.)




More ensemble members from a single model
Decadal Prediction Large Ensemble (DPLE) with CESM1

SST

, 2018, BAMS)
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More ensemble members from a single model
Decadal Prediction Large Ensemble (DPLE) with CESM1
Precipitation

(Yeager et al., 2018, BAMS)
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Some indications of predictive skill for large decadal transitions suggests the
possibility of forecasts of opportunity

Published initialized prediction for IPO
Observed] transition to positive ~2015 using CCSM4

AN S,
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SST anomalies (°C)
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Year
TAS 2015-2019 mi 1998-2012 - . . . . . .
b Physical basis for prediction skill: build-up of off-equatorial

western Pacific ocean heat content is a necessary condition for
an El Nifio event to trigger a decadal timescale IPO transition
(Meehl, Teng, Capotondi, Hu, Cli. Dyn., 2021)
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[ a) Initialized in 2013 [ =9

-\ Prediction (initialized in 2013) for years 3-7 (2015-
2019) shows transition to positive phase of the IPO
1 —~different from persistence

___ or uninitialized

Predicted transition to positive IPO produces global
temperature trend for 2013-2022 of
+0.2240.13°C/decade, nearly 3 times larger than
, 2001-2014 trend of +0.08+0.05°C/decade during

2 '\ previous negative phase of IPO
Predicted trend nearly 3 times larger
® s oo s s s thanearly 2000s (Meehl, G.A., A. Hu, and H. Teng, 2016, Nature Comms.)
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Verification for Meehl et al. (2016) prediction

From Decadal Prediction Large Ensemble (DPLE with CESM1) initialized in
2013 for years 3-7 (2015-2019) shows transition to positive phase of the IPO
different from persistence

DPLE prediction initialized 2013 for lead Observations (2015-2019)
years 3-7 (2015 2019)
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(Meehl, G.A., H. Teng, D. Smith, S. Yeager, W. Merryfield, F. Doblas-Reyes, and A.A.
Glanville, 2022, Climate Dynamics)
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Skillful prediction of total soil water and fire season length
over southwestern U.S. in CESM1 (Chikamoto et al 2017)

Uninitialized: blue

Initialized predictions: red
“observed”= black

(ocean data assimilation run)
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anomaly correlation coefficient

,0.2 1 1 1 1 1 1 1 1
1

S2D: Some quantities other than SST in DPLE show skill:

Globally integrated net ecosystem production
’
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(Lovenduski et al., 2019a,b)
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latitude [Degree North]

S2D prediction skill for ocean net primary production in the tropical eastern
Pacific is greater than for SST

Skill at years 2-5 lead time of the hindcasts over the 10 y of SeaWiFS period (Seferian et al., 2014)

Ocean net primary production SST
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S2D predictions by means other than Earth System models:
Linear Inverse Models (LIMs)

Years 2-5 Years 6-9

Persistence

A linear inverse model (LIM)
shows skill comparable to
Earth System models on S2D
timescales

LIM

DePreSys Predictions initialized yearly

from 1960-2000
(local anomaly correlation;

darker red indicates more
skill)

MPI

L e (Newman, 2013, J. Climate)

GFDL




S2D prediction with machine learning and investigation of
prediction skill with Explainable Al

Step 1: Train ML — S2S/S2D Prediction
® Modes of variability (MJO,

® Physically relevant

upstream fields (SSTs, ENSO).
OLR). \ ® |mpacts (temperature,
i~ precipitation).

SPE N - e '
Explainable Al Generate heatmaps (saliency maps, layer-

wise relevance propagation (LRP)) using
input fields (e.q., Barnes et al. 2020) to

Work led by Maria Molina identify regions/processes that contribute to
(NCAR) prediction skill.



Examples of current outreach initialized S2D prediction efforts:

Several national efforts will be described later in the workshop

WCRP Grand Challenge on Near-Term Climate Prediction

The Grand Challenge on Near-Term Climate Prediction will support research and development
to improve multi-year to decadal climate predictions and their utility to decision makers.

It will furthermore support the development of organizational and technical processes for

future routine provision of decadal prediction services that can assist stakeholders and
decision-makers.

https://www.wcrp-climate.org/gc-near-term-climate-prediction



https://www.wcrp-climate.org/gc-near-term-climate-prediction

WMO Lead Centre for Annual-to-Decadal Climate Prediction

The Lead Centre for Annual-to-Decadal Climate Prediction collects and
provides hindcasts, forecasts and verification data from a number of
contributing centres worldwide.
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Conclusions

Initialized climate prediction spans the continuum of timescales from S2S, S21 and S2D
--Focus of this workshop is S2D

As skill from initial state drops off after a few years, skill from external forcing picks up
Usefulness of predictions beyond 2 years depends on skill and credibility of predictions;
that depends on increased physical understanding the processes we’re trying to predict

and reducing model error

Earth System model predictions are being complemented by other tools such as LIMs
and ML/AI

More ensemble members are better (signal to noise paradox)
Science question: why are model-predicted S2D signals much smaller than observed?

Biogeochemistry may be more predictable than SST in some cases (e.g. net ecosystem
production, CO2 flux, ocean net primary production)






DPLE SST bias and drift due to model error
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(Meehl,Teng, Smith, Yeager, Merryfield, Doblas-Reyes, and Glanville, 2022, Cli. Dyn.)



What phenomena are we trying to predict?



S2D:

For the Atlantic: the Atlantic Multidecadal Oscillation (AMO) now generically referred to as Atlantic
Multidecadal Variability (AMV)

(a) Observed AMO SST Pattern
Observed AMO Index a — L1 05
04 T T T T T T T T T T T T T T 60N éz_ 04
S0°N - 03
0.2 - 02
40°N I o4
0 30°N £ E 0
= L 0.1
-0.21 . 200N TS5 B o2
5 i I B 03
= L . L 1 : L ' L L L L s n L 1o : : 0.4
1880 1900 1920 1940 1960 1980 2000 0 T T ; . T . I 05
8w 6°W 40W 20W 0F

detrended 10-year low-pass filtered annual mean area-averaged SST anomalies
over the North Atlantic basin (ON-65N, 80W-0E), using HadISST 1870-2015
(e.g. Trenberth and Shea, 2006)

For the Pacific: the Interdecadal Pacific Oscillation (IPO) and Pacific Decadal Oscillation (PDO); both
are very closely related, and are now generically referred to as Pacific Decadal Variability (PDV)
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S2D:

For the Pacific: Pacific Meridional Mode (PMM) and North Pacific
Gyre Oscillation (NPGO)
(Amaya, 2019; DiLorenzo et al., 2008; Vimont et al., 2014)

Pacific Meridional Mode
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For the Indian Ocean:

0.2 Decadal variability exists and is

being explored regarding mechanisms
and connections to the Atlantic and
0.2 Pacific (Han et al., 2014; Abram et al.,

10

A% SANNNN RN

10 ° ; LA VIS PIEEEN 2020; Nieves et al., 2015)
\ \/I“\\\\tun\\\\\ =

M AR i T CCE LT R, . | BT
150 180 210 240 270

Decadal variability in the tropical Pacific is associated with decadal ENSO
modulation (Okumura et al., 2017)



Skillful predictions of subpolar gyre SST can lead to better predictions of
other quantities in the Atlantic region (Hermanson et al., 2014)
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variability associated with SPG changes (in SST) diagnosed from composite differences in (June, July, and August) between warm and cold SPG decades

--warm SPG is associated with a warm northern Tropical Atlantic, warm mainland US, and warm European temperatures, especially in the eastern Mediterranean, and
lower surface pressure on average. There is also a low pressure over western Europe, which is colocated with a signal for wet summers.

--The rainfall pattern in the tropical Atlantic regions indicates a northward shift of the Intertropical Convergence Zone (ITCZ), consistent with increased hurricane
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Role of aerosol forcing, as opposed to internal variability, in producing AMV could
introduce skill in initialized S2D predictions
(e.g. Booth et al., 2012; Watanabe and Tatebe, 2019, shown here)
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and models. ~~~ 3Ince the correlation squared Is the fraction ot
variance that is predictable, the RPC can be computed as the
correlation skill for predicting the observations divided by the
average correlation skill for predicting individual model members
(where the square root has been taken for convenience). The
expected value of the rpc should equal one for a perfect
forecasting system; values greater than one are symptomatic of
the signalto-noise paradox where the real world is more
predictable than models. The RPC for decadal predictions of the
NAO is 6, compared to 2 or 3 for seasonal and annual

el a e Falie b=



Computing anomalies for verification—the issue of trends

Prediction initialized in 2013 for IPO transition in 2015-2019 (after Meehl et al., 2016)
DPLE Yr3-7_SST initialized 2013(2015 2019) minus model cim NCEP/NCAR Observatlon
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Initialized Earth System prediction presumes:

There are internal processes, with physical mechanisms that
produce them, that could provide potential predictability in
initialized predictions

Initialized hindcasts can provide insights into such physical
processes and can point to analyses to increase physical
understanding

A candidate: low frequency tropical-midlatitude air-sea
interaction for the Interdecadal Pacific Oscillation (IPO)
(e.g. Meehl and Hu, 2006; Farneti et al., 2014)



Decadal Prediction Large Ensemble (DPLE) Forced

Oce?n and Sea Ice (FOSI) ocean initial states
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Off-equatorial ocean heat content in the
tropical western Pacific appears to provide
the conditions for ENSO events to trigger an

IPO transition
(Meehl, Hu, Teng, 2016, Nature Communications)
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Off-equatorial ocean heat
content appears to reach a
necessary (but not sufficient)
threshold (~0.5 standard
deviations) prior to an ENSO
event that provides the
sufficient condition for a
transition

In the year of an IPO transition
from negative to positive,
there is a better chance of an
El Nifo event

(and better chance of a La Nifa
event from positive to negative
IPO)

Meehl, G.A., , H. Teng, A. Capotondi,
and A. Hu 2021, Climate Dynamics,
doi: 10.1007/s00382-021-05784-y
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Negative
convective
heating anomaly
near 165E can
produce
u-component
wind stress
anomalies in off-
equatorial
western Pacific
to sustain ocean
heat content
anomalies
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prior to transition
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Composites from CESM1 long PI control run

(Meehl, Teng, Capotondi, and Hu, 2021, Cli. Dyn.)

The build-up of decadal timescale upper
ocean heat content in the off-equatorial
western tropical Pacific from ocean heat
divergence from equatorial western Pacific
maintained by convective heating anomalies
and off-equatorial surface winds from a Gill-
type response

Ocean heat convergence into western
equatorial Pacific from westerly anomaly
near-equatorial surface winds associated with
El Nifio activity then sustain anomalously
warm western and central Pacific SSTs from
positive precipitation and convective heating
anomalies, a Gill-type response and wind
stress curl anomalies that continue to feed
warm water into the near-equatorial western
Pacific.



SST and

Wind stress curl (colors)
Ocean surface layer transport -~
wind stress —

Precip O

NH negative curl (blue) = Ekman pumping (downward motion)
SH positive curl (red)= Ekman pumping (downward motion)
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-3yr: persistent easterly anomaly equatorial surface winds and
negative SST precipitation and convective heating anomalies in the
western eq. Pacific

--Gill-type response and cyclonic circulations to the northwest and
southwest with easterly wind stress anomalies near 20°N and 15°S
-- wind stress curl anomalies (negative near 15°N, positive near
10°S) and consequent negative vertical motions in the upper ocean
produce accumulation of heat content and convergence of warmer
water into the off-equatorial western Pacific.

--stronger Trades in eastern tropical Pacific from anomalous high
pressure in North and South Pacific from negative convective
heating anomalies in equatorial central Pacific produce ocean
Rossby waves that propagate slowly to the west, and NPMM and
SPMM-type SST patterns
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SST and

Wind stress curl (colors)
Ocean surface layer transport -~
wind stress —

Precip O

NH negative curl (blue) = Ekman pumping (downward motion)
SH positive curl (red)= Ekman pumping (downward motion)
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ﬁ__ Oyr: westerly anomaly surface winds in tropical western Pacific
B with ENSO activity, consequent positive wind stress curl near 5N
and negative wind stress curl near 5S initiates heat convergence
into equatorial Pacific with positive SST anomalies appear in
western equatorial Pacific; positive heat content anomalies
propagate from the western to eastern equatorial Pacific
producing a flatter, more El Nifo-like thermocline over several
years even with interannual variability superimposed.

30N —

30S -

100E 120E 140E 160E 180 160W 140W 120W 100W  80W
| NI NNUNN ST NN UN NS ST ST S—_—

60N —

|| Oyr

30N =

308 .

L
100E 120E 140E 160E 180 160W 140W 120W 100W  80W



SST and

Wind stress curl (colors)
Ocean surface layer transport -~
wind stress —

Precip O

NH negative curl (blue) = Ekman pumping (downward motion)
SH positive curl (red)= Ekman pumping (downward motion)
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+3yr: positive SST and convective heating anomalies in western
equatorial Pacific and Gill-type response with the easterly
anomalies near 15-20°N and 15-20°S, wind stress curl anomalies
(positive near 15°N, negative near 10°S) and consequent positive
vertical motions in the upper ocean produce depletion of heat
content and ongoing convergence of warmer water into the
equatorial Pacific.

--and so on, to produce an IPO transition from positive to negative
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several years later.






