

WGSIP activities using multi-model hindcast ensembles in S2D research and prediction

Bill Merryfield, ECCC/CCCma, Victoria, BC

US CLIVAR Summit 1 August 2023

WGSIP = WCRP Working Group on Subseasonal to Interdecadal Prediction

- Decadal Climate Prediction Project (DCPP) panel aligned with WGSIP
- WGSIP/DCPP sit within WCRP Earth System
 Modelling and Observations (ESMO)
- ESMO newly established as WCRP Core Project (similar to CLIVAR, etc.)

New WCRP research structure (as of 2021)

DCPP for CMIP7

- Planning well underway, to be finalized in early 2024
- Balance sought between reducing "entry card" computational requirements, e.g. by
 - starting hindcasts in 1980
 - initializing every 2 years
 - and science objectives involving
 - large ensemble sizes
 - longer hindcast periods (starting 1960 or earlier)
 - longer hindcast range (≥20 years)
 - high resolution
- S2I (multi-year) component involving ~2-year predictions initialized >once/year is likely
- DCPP panel will be circulating survey for community input

SPARC/DCPP Volcanic Response Readiness Exercise

Motivation

- A major volcanic eruption like Pinatubo in 1991 would invalidate WMO's current annual to decadal forecasts
- DCPP has <u>Guidelines for climate forecasts after sudden volcanic eruption</u> describing two potential response protocols
- Responding to a hypothetical volcanic eruption will increase readiness of LC-ADCP contributors and support more durable documentation via a journal paper

after Pinatubo

before Pinatubo

1992 mean temperature*

SPARC/DCPP Volcanic Response Readiness Exercise

Approach

• Simulate the response to a major volcanic eruption proposed by SPARC & DCPP:

The hypothetical eruption

- April 2022 in southern Mexico at ~17°N
- $\sim 2 \times$ stratospheric sulfur injection of Pinatubo

Initial results: 2022-2026 tas

Volc

noVolc

tas, 2022-2026, noVolc, CanESM5

tas, 2022-2026, noVolc, FGOALS-f3-L

tas, 2022-2026, noVolc, HadGEM3

tas, 2022-2026, noVolc, MIROC6

tas, 2022-2026, noVolc, CanCM4i

tas, 2022-2026, noVolc, EC-Earth3

tas, 2022-2026, noVolc, GFDL-SPEAR

tas, 2022-2026, noVolc, IPSL-CM62-ESMCO2

tas, 2022-2026, noVolc, NorCPM1

tas, 2022-2026, Volc, CanESM5

tas, 2022-2026, Volc, FGOALS-f3-L

tas, 2022-2026, Volc, HadGEM3

tas, 2022-2026, Volc, MIROC6

Anomalies from 1991-2020 (° C)

tas, 2022-2026, Volc, GFDL-SPEAR

tas, 2022-2026, Volc, IPSL-CM62-ESMCO2

tas, 2022-2026, Volc, NorCPM1

tas, 2022-2026, Average

Multi-model average

tas, 2022-2026, EC-Earth3

tas, 2022-2026, GFDL-SPEAR

tas, 2022-2026, NorCPM1

Initial results: 2023 tas

Volc

noVolc

tas, 2023, noVolc, CanESM5

tas, 2023, noVolc, FGOALS-f3-L

tas, 2023, noVolc, HadGEM3

tas, 2023, noVolc, MIROC6

tas, 2023, noVolc, EC-Earth3

tas, 2023, noVolc, GFDL-SPEAR

tas, 2023, noVolc, IPSL-CM62-ESMCO2

tas, 2023, noVolc, NorCPM1

tas, 2023, Volc, CanESM5

tas, 2023, Volc, FGOALS-f3-L

tas, 2023, Volc, HadGEM3

tas, 2023, Volc, MIROC6

Anomalies from 1991-2020 (° C)

tas, 2023, Volc, CanCM4i

tas, 2023, Volc, EC-Earth3

tas, 2023, Volc, IPSL-CM62-ESMCO2

tas, 2023, Volc, NorCPM1

1.5

tas, 2023, HadGEM3

tas, 2023, MIROC6

Volc - noVolc tas, 2023, CanCM4i

tas, 2023, EC-Earth3

tas, 2023, GFDL-SPEAR

tas, 2023, IPSL-CM62-ESMCO2

tas, 2023, NorCPM1

All systems predict 2023 El Niño from late 2021!

tas, 2023, Volc, GFDL-SPEAR

Climate-system Historical Forecast Project (CHFP)

Current status

- Database of hindcasts from ~20 seasonal systems
- Has informed ~20 papers
- However, multiple barriers to keeping CHFP relevant:
 - > Difficult to persuade centers to provide tailored data with every system update
 - Emergence of other hindcast data sources (e.g. NMME, C3S)
 - Sustainability at CIMA

Possible way forward

TPOS 2020 final report recommended

"...development of a community effort to document model biases and to quantify how [seasonal] prediction systems may be improving with time"

- WGSIP, APCC and WMO are exploring
 - Quasi-automated archiving of past, present & future generations of hindcasts from WMO Global Producing Centres
 - Migration of CHFP from CIMA
- Methodology for benchmarking performance when hindcast periods differ
 - Compare all systems vs "control" hindcast that spans 1960s-present
 - Employ random walk method of DelSole & Tippett

http://chfps.cima.fcen.uba.ar/

Lin et al., WAF (2020)

Long Range Forecast Transient Intercomparison Project

- Objective is to facilitate intercomparisons of shock/drift/bias following initialization
- Database of pre-computed hindcast + congruent observed climatologies (daily, monthly, annual)
- Currently 6 subseasonal, 20 seasonal, 16 decadal systems from S2S, CHFP, DCPP

Research Article 🖻 Open Access 💿 🕥

A Data Set for Intercomparing the Transient Behavior of Dynamical Model-Based Subseasonal to Decadal Climate Predictions

Ramiro I. Saurral 🔀, William J. Merryfield, Mikhail A. Tolstykh, Woo-Sung Lee, Francisco J. Doblas-Reyes, Javier García-Serrano, François Massonnet, Gerald A. Meehl, Haiyan Teng,

First published: 25 August 2021 | https://doi.org/10.1029/2021MS002570

Initial development of SST biases in NCEP and ECMWF S2S systems

WCRP Workshop on Extremes in Climate Prediction Ensembles (ExCPEns)

- Online from APEC Climate Center 25-27 October 2021
- Early Career Scientist training and discussion forum 27-28 October 2021

The focus of this workshop is exploiting subseasonal, seasonal, annual to decadal and longer-term prediction ensembles to improve the prediction and understanding of extreme weather and climate events.

Sessions:

- 1. Identification of extremes in observations and climate prediction ensembles
- 2. Physical mechanisms of extremes in observations and climate prediction ensembles
- 3. Regional climate extreme information relevant to impacts, vulnerability and adaptation
- 4. Prediction and predictability of large-scale climate variability relevant to extreme events
- 5. Prediction and predictability of specific extreme events (>10 days)
- 6. Quantifying current and future risks of climate extremes

See <u>https://www.apcc21.org/act/workView.do?lang=en&bbsId=BBSMSTR_00000000024&nttId=7395</u> (se

<u>5</u> (search ExCPEns APCC WGSIP)

for links to program, presentation files, recorded talks

Extreme ENSO events in Copernicus seasonal hindcasts

Motivation

- Knowledge about potential ENSO extremes is limited by having only one observed realization + limited modern observational record
- Climate prediction ensembles can **greatly multiply** the number of realizations (assuming sufficiently realistic)

Approach

- Examine ENSO extremes in C3S seasonal hindcasts
 - 8 models, 184 ensemble members
 - 6-month hindcasts, 1993-2016
 - 4416 realizations!
- Focus on **December Niño3.4 initialized in July** (least constrained by initial conditions)
- Remove amplitude biases by rescaling to observed Niño3.4 variance

Merryfield & Lee, Asia-Pacific Journal of Atmospheric Sciences 2023, https://doi.org/10.1007/s13143-023-00328-2

Extreme ENSO events in Copernicus seasonal hindcasts

Example

• Raw & rescaled ECMWF plumes from July 2015:

Results

- Based on these many realizations, occurence frequencies for Dec Niño3.4 correspond to
 - > 3.0 once in ≈30 years
 - > 3.5 once in ≈80 years
 - < -2.5 once in \approx 60 years
 - < -3.0 once in ≈400 years
- Caveats
 - model biases besides mean & amplitude not accounted for
 - occurrence frequencies somewhat model dependent
 - results are specific to 5-month lead realizations of 1993-2016 period

Additional WGSIP activities involving MME

- Influences of temperature trends
- Seasonal prediction of ocean MLD, SSH and associated verification issues
- Seasonal to multi-year monsoon prediction
- Symposium on Frontiers in Subseasonal to Decadal Prediction →

https://www.wcrp-climate.org/decadal-prediction-link/symposium-frontiers-sdp

(search WGSIP meetings)

WCRP hybrid symposium on Frontiers in Subseasonal to Decadal Prediction

28 March 2023, ECMWF Reading, UK and online

Agenda and presentations

Agenda (.pdf version)

- The bone and the marrow: some suggestions for the future of climate prediction *F. Doblas- Reyes*
- Destination Earth and the future of climate information P. Dueben
- Prospects for Earth system reanalysis at ECMWF: ERA6 and beyond H. Hersbach
- Multi-year prediction of the global carbon cycle and potential policy implications T. Ilyna
- The role of aerosols in climate predictability and prediction A. Frassoni
- Toward resolving the ocean mesoscale: challenges and potential benefits C. Roberts
- Explainable AI for Climate Science: Detection, Prediction and Discovery E. Barnes
- Use of assimilation increments for bias correction and predictability studies A. Molod
- The role of vegetation in climate predictability and prediction A. Alessandri
- Application of subseasonal to decadal predictions to marine ecosystem management M. Jacox
- Improving seasonal forecasts using probabilistic deep learning D. Lucas
- Current and future directions for development of subseasonal to multiseasonal climate services J-H. Yoo

Extra slides

VolRes-RE Participation

• Currently, 9 models have contributed Protocol 1 forecasts, 7 have contributed Protocol 2 forecasts:

Centre	Model	Init time** P1(P2)	Range (y)	Ens size (H/F)	Fcst type
CCCma*	CanCM4i	2022-01(2022-04)	10(10)	10/10	Full
CCCma	CanESM5	2022-01(2022-04)	10(10)	20/40	Full
BSC*	EC-Earth3	2021-01(2022-04)	10(10)	10/10	Full
LASG*	FGOALS-f3-L	2021-01(2022-04)	9(5)	9/9	Full
GFDL*	SPEAR	2022-01(2022-04)	10(10)	-/10	Anom
MOHC*	HadGEM3	2021-11(—)	10(—)	10/10	Full
IPSL	CM62-ESMCO2	2022-01(—)	5(—)	5/10	Full
MIROC*	MIROC6	2021-01(2022-04)	10(10)	10/10	Full
BCCR*	NorCPM1	2021-01(2022-04)	10(10)	10/30	Full
MRI*		(in progress)			

*Contributed to LC-ADCP 2022-2026 forecast *

**All systems initialized on 1st day of indicated month

What does this imply about ENSO extremes?

Conclusions

 Results suggest ENSO extremes exceeding those in observed record are realizable, leading to unprecedented impacts

C3S Dec 2015 lead 5 composite Niño3.4 > 3.5

GPCP2.3 composite Dec 1982, 1997, 2015

WGSIP Temperature Trends project

<u>Objectives</u>

- Assess long-term global and regional temperature trend errors as a function of lead time across many seasonal prediction systems
- Assess extent to which temperature trend errors impact temperature prediction skill
- Relate trend errors to radiative forcings and initialization methodologies
- Develop a **synthesis** of previous & new results for the community

*in units of standard deviations of the forecast distribution

Results & community activity

- Temperature trend errors ~20 models have been assessed →
- The issue of how such errors can bias forecasts & skill measures is gaining traction in the community, though not in a coordinated manner ↓

 Δ (Eq Nino3.4 ST bias), (1999-2016)-(1982-1998)

SST trend error at 8.5 month lead, 1982-2014

MLD prediction results & plans

- MLD is important for ecosystems, atmosphereocean interactions
- Intercompare multiple verification products (done) →
- Assess skill of 5 CHFP models & combinations thereof
- Assess utility of multi-product verification, as for SSH →
- Paper discussing skills, efficacy of verification datasets, potential utility of seasonal MLD predictions

