

Paleo-AMOC Review

Dr. Paola Moffa-Sanchez paola.l.moffa-sanchez@durham.ac.uk

Thanks to all co-authors, collaborators and the AMOC community

Outline

- Paleoceanography and progress studying past AMOC
- The role of AMOC on past climate changes
- AMOC during the last millennia What have we learnt?

Motivation to study the past ocean

Progress made in reconstructing the past ocean

Sedimentary Archives

Banded Archives

δ¹⁸Ο δ¹³C εNd ²³¹Pa/²³⁰Th

El/Ca

What can we learn from these about past AMOC?

What can we learn from these about past AMOC?

1. Past changes in ocean properties of certain AMOC branches (e.g. temperature, salinity, nutrients, sea-ice, drift ice, primary productivity, frontal shifts)

2. Climate Model Analysis

- Data-Model comparisons to study ocean processes
- AMOC surface fingerprints (e.g. Thornalley et al., 2018)

Curry and Mauritzen 2005

- 3. Proxies representing dynamic ocean processes:
- Whole basin overturning proxies (²³¹Pa/²³⁰Th; e.g. Lippold et al., 2019)
- Near Bottom Deep Flow Vigour (e.g. SS, k; e.g. Thornalley et al., 2018, Kissel et al., 2013)
- Water mass geometries (e.g. NADW, SPMW using δ¹³C;εNd;Cd/Ca; e.g. Oppo et al., 2000, Gebbie et al., 2014)
- Ocean ventilation (e.g. ¹⁴C, Robinson et al., 2005)
- Combining ocean properties to calculate ocean dynamics (e.g. Gulf Stream transport; Lynch-Stieglitz et 1999, Lund et al., 2006)

Progress in the last 20 years

Grey indicate marine records with no complete last 500 years/ >100 years/sample/limited age constraints

Available records ~20 years ago

Marine records to date

- Uneven distribution
 of records
- Large concentrations in coastal/shelf regions
- Disparities in resolution
- Insufficient overlap with ocean observations

Progress in last few decades

- Increase the number of high-quality archives (temporal resolution)
- Increase in new proxies (more data)
- Better proxy calibrations \rightarrow quantitative ocean reconstructions
- Better spatial coverage (regional versus localized picture)
- Computation advances have allowed physic-based interpretation of paleo-data

Role of the AMOC in Glacial-Interglacials

Longitude (degrees)

Arctic

Mackensen and Schmiedl 2019, Earth Sci. Rev

Role of the AMOC in Abrupt Climate Changes

Lynch-Stieglitz 2016, Ann Reviews

Role of the AMOC in the Holocene

Potential explanations for Holocene climate variability

Holocene AMOC long-term evolution

Data: Contrasting proxy results

- Diverging trends in specific deep AMOC branches (Nordic Overflows, DWBC)
- Consistent I-S Overflow weakening over the Holocene (Thornalley et al., 2013, Kissel et al., 2013, Mjell et al., 2016)
- Data compilation uses models to calculate an AMOC index which is in agreement with ISOW changes (Ayache et al 2018)

Blasheck et al., 2015, Paleoceanography

Holocene AMOC long-term evolution

Data: Contrasting proxy results

- Diverging trends in specific deep AMOC branches (Nordic Overflows, DWBC)
- Consistent I-S Overflow weakening over the Holocene (Thornalley et al., 2013, Kissel et al., 2013, Mjell et al., 2016)
- Data compilation uses models to calculate an AMOC index which is in agreement with ISOW changes (Ayache et al 2018)
- Overturning from ²³¹Pa/ ²³⁰Th indicates AMOC stability over the Holocene (Lippold et al., 2019, Hoffman et al., 2018)

Models: Discrepancies of AMOC's long-term evolution and between 6K and Pre-Industrial. Although HR models show weakening but still differences across CMIP5 models (Shi and Lohman et al., 2016, GRL)

Climate of the last millennia around the North Atlantic

Centennial variability of the AMOC during the last millennia

Palaeo-oceanography

Deepwater variability in the Holocene epoch

Delia W. Oppo*, Jerry F. McManus*, James L. Cullen†

Detecting Holocene changes in thermohaline circulation

L. D. Keigwin* and E. A. Boyle

Was a change in thermohaline circulation responsible for the Little Ice Age? G Wallace S. Broecker'

> Holocene periodicity in North Atlantic climate and deepocean flow south of Iceland

Giancarlo G. Bianchi & I. Nicholas McCave

Wobbly ocean conveyor circulation during the Holocene?

George H. Denton^{a,1}, Wallace S. Broecker^{b,*}

Persistent Solar Influence on North Atlantic Climate During the Holocene

Gerard Bond, ^{1*} Bernd Kromer, ² Juerg Beer, ³ Raimund Muscheler, ³ Michael N. Evans, ⁴ William Showers, ⁵ Sharon Hoffmann, ¹ Rusty Lotti-Bond, ¹ Irka Hajdas, ⁶ Georges Bonani⁶

Gulf Stream density structure and transport during the past millennium

David C. Lund¹⁺, Jean Lynch-Stieglitz² & William B. Curry³

A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates

Gerard Bond,* William Showers, Maziet Cheseby, Rusty Lotti, Peter Almasi, Peter deMenocal, Paul Priore, Heidi Cullen, Irka Hajdas, Georges Bonani

What have we learnt? Warm Atlantic Waters

Planktonic Foram

Consistent millennial MSM5/5-712 -06-WP-04-MCB scale cooling with 80°N cooling at 1200-1500 years AD. 70°N 197-948/24 MD95-2011 Region I (Fig.2) P1003MC/ Large regional 60° variability: GS06-Enclosed bays Scotian Shelf: ENAM9606 Interaction 50°N 10200309 between Slope Region 2 (Fig.3) Waters, Ext Open Ocean: Proxy OCE326/13M Labrador diff. \rightarrow seasonal 40°N Current and biases proxy carriers Gulf Stream 1-MD99-2269 2-MD99-2275 Scottish Shelf: Waters 3-HM107-03 Recent warming of BC-004A/DC 4-Arc.Icelandica 5-MD99-2263 Bb00 6-MD99-2273 coastal waters 30°N 20°W 80°W 60°W 40°W 0° 20°E

Durham Universitv

(I)

(2)

Records synthesized in Moffa-Sanchez et al., 2019 P&P

What have we learnt? Warm Atlantic Waters

- Records of subsurface temperatures •
- Consistent proxies across sites •
- Accounting proxy and age uncertainty consensus analysis of the four records found in Warm Atlantic Waters or in the pathway of the NAC and its branches.
- Results reveal coherent patterns. •

200

-200 200

200

Years BP

What have we learnt? East Greenland Current

2020

 \mathbb{R}

Jniversitv

- Millennial cooling with an increase in ice presence around East&South Greenland
- Records close to the polar front suggest southward shifts
- Most records present coldest and more ice-laden conditions during the Little Ice Age with a step-like transition ~1100-1500 years CE

Records synthesized in Moffa-Sanchez et al., 2019 P&P

What have we learnt? Surface Circulation

Data: Moffa-Sanchez and Hall 2017; Moffa-Sanchez et al., 2014, NatGeo; Moffa-Sanchez et al., 2014b, Perner et al., 2015, Bond et al., 2001.

Models: Moreno-Chamarro et al. 2017, Moreno-Chamarro et al., 2015, 17a, 17b; Moffa-Sanchez et al., 2014a; Lehner et al., 2012; Jogma et al., 2007; Schulz et al., 2007

Outstanding Questions: (1) What was the trigger? External forcing (Solar/volcanism), internal dynamics, role of atmospheric changes (NAO/EAP)? (2) Was the AMOC affected during these cold periods?

What have we learnt? Deep AMOC branches

- Slowdown of ISOW close to the ridge last 1500 years. Evidence of multidecadal variability (Mjell et al., 2015, Moffa-Sanchez et al., 2015).
- DSOW antiphased with ISOW vigour
- uDWBC show centennial scale variability with some similarities to DSOW

Records synthesized in Moffa-Sanchez et al., 2019 P&P

No clear paleo-evidence (yet) for recent AMOC

Discrepancies across datasets

- No obvious AMOC fingerprint in SST in SPG (Rahmstorf et al., 2015, Caesar et al., 2018) or Tsub (not 400m) (Zhang et al., 2008) for an AMOC slow down
- Caveats (it is there but we cannot see it):
- Not enough data points in the last 200 years
- SST records (noise&strong seasonal bias)

→ We need more high-resolution paleodata from the recent centuries

Conclusions and some thoughts...

- Important progress in understanding past North Atlantic circulation thanks to an increase in high-quality archives and proxies
- Coupling data and model results have allowed to understand ocean dynamics at centennial time-scales.
- Consistent picture emerging for North Atlantic surface circulation changes to explain centennial-scale climate variability over the last millennium. Although still some disparities across records and some data-model comparison challenges.
- Moving forward we should aim to:
 - Understand disparities across records (proxy biases)
 - Exploit and design statistical methods to assemble data accounting for spatiotemporal and proxy uncertainties
 - Seek original avenues to combine proxy records to gain insights into ocean dynamic processes.

Holocene AMOC long-term evolution

Data: Contrasting proxy results

- Diverging trends in specific deep AMOC branches (Nordic Overflows, DWBC)
- Consistent I-S Overflow weakening over the Holocene (Thornalle et al., 2013, Kissel et al., 2013, Mjell et al., 2016)
- Proxy data compilations use models to calculate an AMOC index which is in agreement with ISOW changes (Ayache et al 2018)

Ayache et al., 2018

