Freshwater-driven feedbacks between the Arctic and North Atlantic

M. Oltmanns, P. Holliday, B. Moat
To identify links to the Arctic, we start with the first mode of variability in the North Atlantic and investigate its evolution.

Based on merged NOAA and Hadley SST data in winter (January-March)
The two SST patterns form a cycle.

\[
SST(x, y, t) = r(t) \cdot SST_c(x, y) + s(t) \cdot SST_T(x, y) + SST_R(x, y, t)
\]

\[
\dot{r}(t) = s(t), \quad \dot{s}(t) = -r(t)
\]

The cycle consists of two orthogonal modes, is most pronounced on decadal timescales and explains over 50% of the subpolar SST variance.
The cycle is associated with enhanced Arctic sea ice export.

Based on ice concentration data from NOAA, 1979 – 2020, and Hadley SST, 1950 – 2020
This (idealised) cycle is dynamically linked through ocean and atmosphere feedbacks.

More cyclonic Arctic gyre → Enhanced ice export → Cold anomaly → Increased storminess → Shift of North Atlantic Current → Anticyclonic anomaly east of Greenland → Reduced ice export → More cyclonic winds over Arctic → Increased buoyancy-driven northward flow → Warm anomaly

Cassou et al., 2004; Deser et al., 2007; Ferreira & Frankignoul, 2005; Gulev et al., 2013; Kushner et al., 2002; Kwok et al., 2013; Marshall et al., 2001; Oltmanns et al., 2020; Proshutinsky and Johnson, 1997; Proshutinsky et al. 2015; Ricker et al., 2018; Zhang et al., 2019
The warm anomaly stage forms the slowest link in the cycle.

Polar histogram, obtained by converting to polar coordinates; the colour refers to the radius, which is the strength of the cycle.
In recent years, a new cold anomaly emerged from it, even though it was not its turn.

Streamfunction at 500 hPa, based on 50 SST-forced simulations with ECHAM5 over 40 years; NAO from NOAA; SST from Hadley; red years indicate a new freshening mechanism; blue years comply with the cycle.
The cycle took a shortcut.

- Enhanced ice export
- Cold anomaly
- Shift of North Atlantic Current
- Increased storminess
- Increased buoyancy-driven northward flow
- Warm anomaly
- More cyclonic Arctic gyre
- More cyclonic winds over Arctic

Cassou et al., 2004; Deser et al., 2007; Ferreira & Frankignoul, 2005; Gulev et al., 2013; Kushnir et al., 2002; Kwok et al., 2013; Marshall et al., 2001; Oltmanns et al., 2020; Proshutinsky and Johnson, 1997; Proshutinsky et al. 2015; Ricker et al., 2018; Zhang et al., 2019
The shortcut has accelerated the cycle from decadal to interannual timescales.

Morlet wavelet with NAO from NOAA and Hadley SST
The Arctic gyre has now been in an anti-cyclonic regime for over 20 years, resulting in the accumulation of freshwater.

Proshutinsky et al., 2020; Wang et al., 2018, 2021

However, extreme northward shifts of the North Atlantic Current after runoff-driven cold anomalies also promote a more cyclonic Arctic gyre regime.

Oltmanns et al., in prep.
Conclusion

- Ice and freshwater exports from the Arctic participated in a cycle that explains a substantial part of North Atlantic variability.

- Over recent years, a new cold anomaly mode has interfered with this circulation-driven freshwater cycle.

- The interference has led to an acceleration of the cycle in the North Atlantic and a weakening and accumulation of freshwater in the Arctic.

Oltmanns et al., in prep.
Thank you

Contact email: marilena.oltmanns@noc.ac.uk
The two SST patterns form a cycle.

\[\text{SST}(x, y, t) = r(t) \cdot \text{SST}_{FW}(x, y) + s(t) \cdot \text{SST}_T(x, y) + \text{SST}_R(x, y, t) \]

\[\dot{r}(t) = s(t), \quad \dot{s}(t) = -r(t) \]
The cycle explains over 50% of the SST variance in the subpolar region.
The wind-driven pattern emerges from the atmospheric feedback to the buoyancy-driven SST pattern.

Regressions based on 50 SST-forced ensemble simulations with ECHAM5 over 40 years; SF is the atmospheric streamfunction at 500 hPa; the arrows show the simulated winds; Ekman pumping was calculated from the resulting wind stresses.
What happens in the absence of strong freshwater events?
Freshwater modulates the buoyancy-driven northward flow.

Derived from a heat budget; Composites are based on SST from NOAA and ERA5 atmospheric data.
After melt-driven freshwater events there is a more cyclonic Arctic gyre.

Regressions in summer with SLP from ERA5 and ADT from Copernicus
Superimposed on decadal variability, there is a significant freshwater trend, leading to stronger temperature gradients and feedbacks.