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Motivation: Why we should care about carbon cycle
reanalysis
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The carbon cycle controls the atmospheric abundance sonl
of the main driver of climate change, atmospheric
carbon dioxide (CO,). Approximately 50% of emitted o
CO, remains in the atmosphere with the other 50% 55 : .
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absorbed by land and ocean carbon sinks. Year

Source: Friedlingstein et al., 2021
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Motivation: Why we should care about carbon cycle
reanalysis
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support these and many other applications. Source: Arora et al., 2020
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Current status of carbon cycle reanalysis
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Current status of carbon cycle reanalysis
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Atmospheric carbon: Highlights
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data assimilation has the advantage that it makes estimates .. mor
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Atmospheric carbon: Challenges/Opportunities

* (Left) Transition from data-limited o
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Oceanic carbon: Highlights

When combined with an OGCM

and ocean-atmosphere radiative MEREA-NOEM LDEO (in situ derived)
transfer model, the NASA Ocean = o ol ] : »
Biogeochemical Model (NOBM) is | da— - : —

able to use satellite ocean color ] —
data to realistically estimate global |
air-sea CO, flux (top panels) and
provide insights on the drivers of
multi-decadal changes in global
primary production (bottom panels).
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Oceanic carbon: Challenges and opportunities

* (Right) Ocean color intercalibration is very
challenging, makes analyzing long time series difficult

« Large uncertainty on export of carbon from surface to
deep oceans — improved process understanding and
representation urgently needed

« Riverine transport of carbon, impact in coastal
ecosystems remains limited by model resolutfion in
most regions

« Sparse observations in Southern Ocean leads to
disagreement on magnitude of air-sea flux (bottom)
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Terrestrial carbon: Highlights
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Product____| Platform/lnst.

NDVI, EVI, LAI AVHRR, MODIS, VIIRS Vegetation greennees

SIF GOME-1/2, GOSAT, OCO, Photosynthesis retrieved from solar
S5P Fraunhofer lines

Biomass lceSat, GEDI, IceSat-2 Lidar measurements of structure

VOD SSM/I, TMI, AMSR-E/2 Plant water content

JPL’'s CARDAMOM framework combines a L
simple diagnostic model with multiple oorN| -
vegetation observations to estimate global
carbon flux and cycling. The example shows
the derived estimates of carbon residence
time. While making advances in ability to
integrate multiple observations, CARDAMOM  sos
Is not connected to a land surface or

coupled modeling/DA framework. e
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Terrestrial carbon: Fire

The Global Fire Emissions Database m rr———

(GFED) combines diagnostic MODIS, VIIRS  Fire radiative 2001-
vegetation model and fire models to

ower/intensit resent
estimate biomass burning emissions = y : P
and fuel consumption. Representation Burned MODIS, VIIRS Burned area (derived  2001-
of fire models in most vegetation area from differencing present
models remains crude and GFED data successive images)

are often used as input.

X’ - Emissions (g C m~2 year 1) : Fuel consumption (kg C m~2 burned)
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Terrestrial carbon: Challenges and opportunities

Annual Gross Primary Production,
LPJ model

Vegetations models can be very sensitive 1o ‘jumps’ in meteorological
forcing associated with observing system changes (right).

Scale mismatch between observations, model grid cell complications
parameter estimation and data assimilation - and makes models hard
to validate, especially in tropical ecosystems.

Complexity of canopy radiative fransfer means most DA must be
done with derived data products whose estimation carries additional
uncertainty.

Highly simplified veg. models struggle to represent long term changes
in vegetation composition and to address important applications (e.g.
biodiversity, ecosystem services) while expensive individual models are
most suitable for small scales where initial data is well known. Hybrid
approaches in development, but relatively low maturity.

Univariate assimilation often leads to getting one quantity right and
another wrong. Matching the full suite of observations and land-
atmosphere exchange may mean a complex mix of initialization,
calibration, and state DA.
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Key future challenge - laying out a framework for more

complete, coupled representation of carbon cycle
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Key future challenge - laying out a framework for more
complete, coupled representation of carbon cycle
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Toward Workshop Goals

1. Most significant advances to date:
*Quasi-operational assimilation of atmospheric CO,
Capability to assimilate current generation ocean color

2. Most significant barriers:

*Reliance on retrieved products

*Poor understanding, representation of lateral land-ocean fluxes
*Maturity of vegetation models

3.Collaborations:

Strong collaboration across NASA centers and laboratories with subject matter expertise
‘NASA-NOAA, JCSDA collaboration on ocean color DA

4. Critical requirements:

*Ability fo assimilate multiple vegetation observations to characterize carbon stocks and fluxes
*Ability o tie atmospheric observations to process level understanding of land, ocean flux
Strategy for coupling between components

*Ability to reproduce observed trends and interannual variability
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