The Observation challenge: deep waters to coasts
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Progress? Revolution in Bluewater T/S

We need to observe globally to understand local changes and their attribution
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We are making progress? Critical satellite missions

Earth Observing Satellites coordinated by CEOS

* Ocean colour radiometry
e Surface Topography

* Vector Winds

* Precipitation

e Sea Surface Temperature
* Sea surface Salinity

Partnered with in situ networks — Integrated System
- surface topography/Argo

- vector winds/Moored Arrays

- Satellite SST/Surface Drifters
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| T/S sampling — 2018/2019 (WOD/NCEI)
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Oxygen sampling — 2018+2019 (NCEI/WOD)
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Big challenges — multidisciplinary/towards coasts

e Offshore: Sustained and deliberate broad scale BGC measurements are
just beginning

* On shelves: it is possible we are going backward with the decline of
regional research fleets/surveys

e Offshore sampling is being enabled by

1. Platform maturity: profiling float and glider technology

2. Sensor maturity: Low power/mass and stable BGC and optical sensors
3. A global observing design (for floats) — not sure for glider sampling?
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\ We are making progress?

OneArgo Design

* 1000 6 parameter
floats

* Nitrate/oxygen/pH

 Chla/CDOM

* Irradiance
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Argo Argo Distribution - OneArgo

Argo global, full-depth, multidisciplinary design: 4700 floats
*  Core Floats, 2500 Target density doubled
*  Deep Floats, 1200

@ BGC Floats, 1000 @
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Multiparameter BGC float array: nascent/not secure

* US has 2 NSF funded
; global research
AR} arrays

an . "~ + ' Othernations are

struggling
e R e | . . . . | = Highsensor prices

| ' ' - and supply
* lack of scale-up in

Argo BioGeoChemical Argo - pH March 2022 new funds

Latest location of operational floats (data distributed within the last 30 days)

e  TRANSISTOR_PH (198)
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‘ Key Ingredient for success

e

ARGO REGIONAL Final corrected
DATA CENTERS data available

Argo Data System s e

DATA EXPERTS

SCIENTIFIC USERS
OPERATIONAL
CENTERS

Groundbreaking s vuwirre
Providing near real-time and
climate-quality delayed mode data.

GTS FEED

RT RT
within within
24 hrs 24 hrs

Including meta- and technical data. ) AT DATA QUALITY CONTRL
All Argo data are freely and g g g 5 g 5 I
immediately available via the I

internet and GTS.
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| Gliders: examples of deliberate/sustained
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Gliders: is there a clear sampling design for the shelf?

 What is the target space/time sampling required? Can models inform a design?
 What BGC and optical sensors should be carried?
e Can their data be easily aggregated with offshore gliders/floats sensors?

 Common standards/formats and realtime data sharing - realtime DACs or GTS
distribution to enable operational uptake

*** | could not find a single site where | can download all US shelf glider data — multiple
sites with multiple formats. How can the operational or reanalysis centres deal with this?
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\ Future challenges and opportunities
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Sensors

high prices for CTDs/nitrate/pH
Dynamic error in oxgen, pH, etc
calibrating optics and interpreting them

Platforms

As access to ship-time decreases, reliance on autonomous platforms will increase.
Drive up longevity (power efficiency) and reliability

Build capacity in more teams

Communications
Shelf/offshore — expensive still (compression or data buses)
Inshore — can use cell networks
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\ Future challenges and opportunities

Bio-Optics

Cusp of a revolution in autonomous remote biological imaging
How can this be deployed on more platforms?

Sampling Design: Time and space scales to resolve?

Can a modern data system be put in place ahead of time ?

B whh e

* Bio-Acoustics

1. Potential to drastically increase volumes sensed, depth and time
resolution of observations

2. Sampling Design: Time and space scales to resolve?

3. As for optics, needs sophisticated processing and in situ validation system

 eDNA - presently requires sampling/obtaining materials, but might
change
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\ Future challenges and opportunities

'.\' frontiers
in Marine Science

PERSPECTIVE
published: 12 January 2022
10.2389/fmars. 2021
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\ Summary

We have made a lot of progress, particularly in the blue water — synergies between
satellites/in situ systems.

Scaling up BGC coverage is a major immediate challenge - SSs, sensor prices and
availability

T/S coverage on shelves remains uneven — could a more deliberate glider array
design and implementation help? Should there be a backbone?

Data distribution/management might still be a barrier to state estimation/prediction

Optical imaging and acoustic sensing might represent the two primary opportunities
to revolutionize biological sampling. How can we expedite their deployments on
various platforms and quickly enable modern data systems?
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