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What are Hindcasts?

1982 1983 1984 © o 0000 000 .

What would the forecast be if we had
today’s modeling system back then?

Based on initial conditions

Has already happened
Robust statistics




How are they different from Forecasts?

What does our model think will happen in the future given today’s information?
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Based on initial conditions

Has not happened yet
Lack of robust statistics




How are they different from Simulations & Projections?

What does our model think could happen under different external forcing situations?

Possible temperature responses in 2081-2100 to
high emission scenario RCP8.5

Possible temperature responses in 2081-2100 to
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Not based on initial conditions

Entirely model-world




How are hindcasts used for S2S Prediction?

Bias Cc.Jrrec.tlon & Model Verification Testmg po.tent|al
Calibration applications

e Make the best e Quantify skill * |s it possible to make
forecast we can given e How well can | trust useful/skillful
the current system this model for my forecast products for
and biases problem? my specific
application?
e Statistical &
dynamical

downscaling for
specific applications



How are hindcasts used for S2S Research?

|dentify & ¢ How do those biases evolve from initial conditions?
Ulale = dsiziael gelel=lt | e How could they be fixed in the model?
biases e How do they impact a forecast?

|dentify & e |dentify forecasts of opportunity
understand sources ERYE: phenomena provide predictability at different

of predictability timescales?




S2S Multi-model Ensemble Hindcasts:
NMME & SubX

North American Multi-model

Ensemble (NMME)

11 Global Models

30 years of monthly re-forecasts
9-month forecasts

Monthly Output

The Subseasonal
Experiment (SubX)
7 Global Models
17 years of weekly re-forecasts

4-week forecasts
Daily Output




Monthly/Seasonal: Model Biases in SST Trends

Observed Trend (1982-2020)

-25 -20 -15 -10 -05 00 05 10 15 20 25

Overly strong SST Trend
with increasing lead time in
NMME Models-> El Nino
prediction errors
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L'Heureux et al. 2022, Frontiers in Climate



Subseasonal: Model biases impact MJO Propagation
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Too frequent light precipitation

Dry low troposphere Excess Surface Too strong precipitation at low-
Precipitation humidity

Kim et al. 2019 JGR Atmospheres



Seasonal: The Pacific Meridional Mode as a Source of
ENSO Predictability

(a) PMM SSTA
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Previous studies identify a precursor
relationship between the PMM &
ENSO, implying a potential predictive
relationship

(a)March Initialized Forecasts (b)March Initialized Forecasts
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PMM variability is well predicted at 1
and 3-month lead times.

March PMM _

+PMM is a promising predictor of EP El Nino,
but not CP El Nino in the NMME models; -
PMM events show no skill in predicting La
Nina.

Larson and Kirtman 2014. J Clim



Subseasonal: Predictability of Heatwaves based on soil

moisture feedback

hot

\ o Breakpoint

Maximum Temperature

low Soil moisture high

Hypersensitive soil moisture regimes that
can persist or intensify heatwaves occur:
“breakpoints”
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SubX + other models show skill in

They link this to the ability of the models to
forecasting the dry side of the breakpoint

forecast extreme heat days in different
regions of CONUS

Benson and Dirmeyer 2021, 2023, J Clim



Why do we need multi-model ensemble hindcasts
for S2S Research?

Based on initial conditions
dentify & Has already happened

understand e Model Improvement Robust statistics
model biases

|dentify & _
Uielsiee @ ldentify what can and

sources of cannot be predicted
predictability




