Modeling capabilities and challenges: Empirical and mechanistic modeling of marine ecosystems/fisheries

Colleen Petrik Scripps Institution of Oceanography 13 April 2022

cpetrik@ucsd.edu

Major accomplishment: Ocean Predictions

CESM DPLE

- Decadal Prediction Large Ensemble
- 1954-2015
- initialized every Nov, run for 10 yr
- 40 members each initialization

CESM FOSI

- Forced Ocean-Sea Ice
- 1948-2015
- forced by reanalysis products

Major accomplishment: Ocean Predictions

Mechanistic ocean

Potential predictability of

45° N

25° N

surface pH

predictability

potential 35° N

SST LY 1-5 **NPP LY 1-5** Yeager et al. 2018 ACC -0.8 -0.6 -0.4 -0.2 0.2 0.6 0.8 0.4 Anomaly Correlation Coefficient (ACC) Lead Year 1 Lead Year 2 Lead Year 3 Lead Year 4 Lead Year 5

-0.4

ACC = Correlation of Retrospective forecasts with FOSI

- SST
- NPP
- pH

Major accomplishment: Fish predictions

Mechanistic ocean, empirical fish

- GFDL seasonal-to-multiannual prediction experiments
- Predictive skill of SST
- SST-sardine biomass relationship
- Use of SST predictions improved harvest guidelines for Pacific sardine
 - ↑ yield (catch)
 - \downarrow stock biomass variability

Major accomplishment: Fish predictions

Mechanistic ocean, empirical fish

- GFDL seasonal-to-multiannual prediction experiments
- Predictive skill of SST and/or chlorophyll
- Significant relationship between SST or chlorophyll with catch
- Predictive skill of fish catch

Correlation of Fish catch model forced by retrospective forecasts with

Empirical fish relationships

٠

Other drivers beyond SST, NPP/chl

- Other drivers beyond SST, NPP/chl
 - 2° production
 - Export production

- Other drivers beyond SST, NPP/chl
 - 2° production
 - Export production
 - Oxygen, MI (Zhuomin Chen poster)
 - Bottom temperature
 - pH

- Other drivers beyond SST, NPP/chl
 - 2° production
 - Export production
 - Oxygen, MI (Zhuomin Chen poster)
 - Bottom temperature
 - pH

- Other drivers beyond SST, NPP/chl
 - 2° production
 - Export production
 - Oxygen, MI (Zhuomin Chen poster)
 - Bottom temperature
 - pH
- Static relationships estimated during historic period
 - Climate change conditions extrapolate outside of range experienced
 - Need to continuously reevaluate relationships with new observations

Major accomplishment – ecosystem climatology

Mechanistic ocean, mechanistic fish

FEISTY – Fisheries Size and Type Model

Petrik et al. 2019

Major accomplishment – ecosystem climatology

Mechanistic ocean, mechanistic fish

Modeling Climate Impacts on Predictability of Fisheries

Fish model skill

Mechanistic ocean (FOSI), mechanistic fish

• Correlations with climate indices: PDO & N America

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Mechanistic ocean (FOSI), mechanistic fish

- Correlations with climate indices: PDO & California Current LME
 - Lagged in time as fish size increases

Mechanistic ocean (FOSI), mechanistic fish

- Correlations with climate indices: PDO & California Current LME
 - Smoothing of variability as fish size increases

Mechanistic ocean (FOSI), mechanistic fish

• Ability of physics and biogeochemistry to explain fish variability

"Reynolds decomposition" of FOSI

• Full

•

- $= \overline{(T} + T') + (\overline{Z} + Z')$
- Climatology
- var Temp
- var Prey

- $= (\overline{I} + \overline{I}) + (\overline{Z} + \overline{Z})$ $= (\overline{T}) + (\overline{Z})$
- $= \overline{(T} + T') + (\overline{Z})$
- $=\overline{(T)}+(\bar{Z}+Z')$

Varying the prey alone captures the full dynamics

*prey were influenced by varying temperature in the ESM

Temperature effects on physiology greater influence in cold and hot LMEs

Petrik et al. in prep

Earth System Model predictions

ESM Plankton skill

Predictability of secondary production

- ESM skill assessment of historical simulations
- SST heavily validated by model developers and CMIP

BCG – mostly nutrients and Chl and/or NPP

BCC-CSM2-MR vs. BCC-CSM1.1-M CanESM5 vs. CanESM2 CanESM5-CanOE vs. CanESM2 CESM2 vs. CESM1-BGC CNRM-ESM2-1 vs. CNRM-ESM1

GFDL-ESM4 vs. GFDL-ESM2M GFDL-CM4 vs. GFDL-ESM2M GISS-E2-1-G-CC vs. GISS-E2-R-CC UKESM1-0-LL vs. HadGEM2-ES IPSL-CM6A-LR vs. IPSL-CM5A-LR MIROC-ES2L vs. MIROC-ESM MPI-ESM1-2-LR vs. MPI-ESM1 NorESM2-U vs. NOrESM1-ME

Predictability of secondary production

• Comparisons of modeled plankton and export with observations are not strong

Predictability of secondary production

- Lacking observations globally, over time
 - Chlorophyll, NPP, Export production skill assessments all cover multiple decades
 - Zooplankton only has a climatology from all data collected before 2015
 - Can create a global product using GLMMs

Predictability of secondary production

- Lacking observations globally, over time
 - Can create a global product using GLMMs
 - Used for skill assessment
 - Spatial patterns and Seasonal trends

Moriarty & O'Brien 2013; Heneghan et al. 2020; Petrik et al. submitted GBC

Predictability of secondary production

- Lacking zooplankton rates could constrain & lend mechanistic insights
 - Structural and parameter uncertainty of biogeochemical models (see Kearney et al. 2021)

CNRM, IPSL, UK

CAN

CMCC, GFDL

Predictability of fish

- Lacking observations globally, over time
 - Fisheries-independent fish biomass
 - Scattered throughout institutions, not centrally located
 - No processing that facilitates comparing places and times (standardization of units, etc.)

Fish model skill

Perspectives

- More predictive skill assessment of non-temp, non-NPP variables
 - Mechanistic understanding still needed
 - Temperature and oxygen affects on physiology
 - Resource availability
- Use of ensembles that span structural and parameter uncertainty instead of ensemble of initial condition perturbations?
- Top-down effects
 - How important is fishing mortality for ecosystem predictions?

Acknowledgments

- Collaborators:
 - Matt Long, Sam Siedlecki, Charlie Stock, Curtis Deutsch, Zhuomin Chen
 - Jason Everett, Cheryl Harrison, Ryan Heneghan, Jessica Luo, Anthony Richardson
 - Daniel van Denderen, Ken Andersen, Remy Denechere

Ecosystem models Fisheries Ecosystem Model

Inter-comparison Project FISHMIP

Earth system models Coupled Model Intercomparison Project CMIP

cpetrik@ucsd.edu