Many explanations for S.O. SST trend:
- Delayed warming/ MOC
- Modes of variability and winds
- Antarctic meltwater
- Forced wind response to ozone and/or CO2
- Negative cloud feedback

Q1: If models got the SST (& sea ice) trends in the Southern Ocean right, for the right reasons, would everything else fall into place?

Antarctic ice cores are the paleo Southern Ocean

World revolves around the Southern Ocean

Southern Ocean

Strongly linked to tropical Pacific

Strongly linked to ECS

Heat uptake
Carbon uptake
Cloud feedbacks
Q2: What can we learn by looking in the vertical dimension (not just at SST patterns)?

Q3: What observations have been most essential to your science? What new observations or observational syntheses would you like to have?

CESM1-LE* climatology minus LENS climatology looks similar to the observed trend in troposphere.

*Shows the impact of increased supercooled cloud liquid. Kay et al., 2016; Schneider, Kay, Lenaerts 2020
Exciting new ideas

- Importance of climatological salinity in determining Southern Ocean OHU and cloud feedbacks (Maofeng Liu’s poster)

⇒ Time-dependent OHU efficiency $\gamma(t)$. Implications for OHU efficacy ε?

- T_s-independent component of N related to Southern Ocean OHU (Jonathan Gregory’s poster)
Wary of involved methodologies

- **Feedback formalisms** require consequential choices (qv vs. RH, local vs. global normalization, etc. etc.)

- **Green’s function** approaches: Emphasize non-locality, but are they actually linear in $T(x)$? (Bosong Zhang’s [poster](#))

How Tropical Convection Couples High Moist Static Energy Over Land and Ocean

Yi Zhang¹ and Stephan Fueglistaler¹²

Tropical convection exhibits well-understood threshold behavior ⇒ inherently non-linear!
(Why) do models fail to capture observed warming patterns?

- Its partly forced and they have the wrong forcing / response to forcing?
- Insufficient natural variability? (biased cloud feedback on warming patterns)
- They do if you run them enough times?

See also Zhou et al (2016); Fueglistaler and Silvers (2021)

zelinka1@llnl.gov
Can we develop some emergent constraints on future warming patterns?

Out of sample (Paleo) tests of GCMs

Finding ways to disentangle forced and unforced warming patterns seems like a crucial first step
 • Job for ML?
 • Ancillary information (sub-surface, altimetry, etc)?

zelinka1@llnl.gov
(How) are OHU and TOA feedbacks related via pattern effect?

Meehl et al (2011)
Zhou et al (2016)
zelinka1@llnl.gov
Why do coupled models get too much tropical upper tropospheric warming despite simulating a weaker west-to-east warming gradient?

Temperature Response to W. Pacific warming
* Dong et al (2019)

Upper tropospheric Warming Amplification

* AMIP Models
* Coupled Models
* UAH
* RSS

* Models
* Obs

*zelinka1@llnl.gov

Po-Chedley and Fu (2012)
Is the SST pattern the only thing that matters for a “pattern effect” on decadal to multidecadal timescales?

- Land surface temperatures?
- Spatial pattern of heterogeneous anthropogenic radiative forcings (including atmospheric adjustments)? How heterogeneous is heterogeneous enough?
- Patterns of heterogeneous natural forcing that might be correlated with large-scale shifts in the climate system? (desert dust, wildfire, ocean DMS)

Total emissions Δ in each region = China year 2000 emissions
22.4 Tg sulfate precursor
1.61 Tg black carbon
4.03 Tg organic carbon

Persad and Caldeira (2018)
What is the utility of understanding purely CO2-driven feedbacks if we think the feedbacks behave differently in response to other forcings/depend on what else is happening in the earth system?

- On human timescales, multiple forcings will always be varying in tandem

- Even on paleo timescales, CO2 forcing happens on a background of other earth system changes

- Just because CO2 drives the global-mean, doesn’t mean it drives the anomalies from the global-mean

Rohrschneider et al. (2019)
Ways forward. Some random thoughts
Piers Forster (University of Leeds)

1. **Defining types of pattern effect(s)**
 - timescales
 - patterns
 - variables
 - processes
Ways forward. Some random thoughts
Piers Forster (University of Leeds)

2. **Can we set bounds?**
 - Zhou et al. (2021) committed warming
 - Could current pattern effect grow?

Lawrence Jackson, emulation of ESMs under SSP245 adding historic pattern effect onto AMIP runs
3. **Historic pattern effect might not exist or matter**
 - Address uncertainties in observations and models
 - What is appropriate reference state?
 - Are there compensating effects for lambda in ocean?
Ways forward. Some random thoughts
Piers Forster (University of Leeds)

4. **Design clever model experiments**
 - Green functions useful but remember it’s a coupled problem
 - Testable hypothesis for a “pattern effect” MIP
 - Role of forcing under examined?
 - emergent constraints/paleo constraints or process tests for pattern effects
 - Chip away at problem starting with what we know best, e.g. southern ocean?

 - High resolution models for clouds/ocean mixing
 - Testing and rejecting simple physical models of pattern effect
 - AMIP like but wind nudging: so keep the coupling…