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Global radiative forcing (F ) changes approximately linearly with time over the CO2

rampings, by about 3.7 Wm�2
per 70 yr, which is the period of CO2 doubling or halving

[Myhre et al., 1998]. The o↵set in Figure 1 between warming (red) and cooling (blue)

trajectories implies a lagged response of hemispheric-mean annual-mean surface tempera-

ture anomalies (�TNH and �TSH), as expected from deep ocean heat storage [e.g., Held et

al., 2010]. In order to approximately account for this lag, we consider the evolution of ice

area as a function of hemispheric temperature rather than time. A justification for this

treatment is that annual-mean Arctic sea ice area has been found to decline linearly with

increasing global-mean temperature across a range of GCMs, emissions scenarios, and

climates [Gregory et al., 2002; Ridley et al., 2008; Winton, 2006, 2008, 2011]. Specifically,

we extend the arguments of Winton [2011], relating hemispheric ice cover to global forcing

through
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ŷ (3)

we =
1

⇢
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ŷ +

✓
@v

@x
�

@u

@y

◆
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Radiative  
damping 
R = λT

If you know  you know ECSλ

 T

 N

Equilibrium: N = 0

 N = F + λT

  Teq =
F
λ

Gregory et al 2002, Otto et al 2013, Forster 2016



Estimates of ECS
NOAA ERSST 1979-2020

abrupt4xCO2
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Murphy et al 1996, Senior and Mitchell 2000, Winton et al 
2010, Sherwood et al 2020,  Andrews et al 2018 , etc, etc, etc

  Teq =
F
λ



Turns out radiative response is complicated
NOAA ERSST 1979-2020

abrupt4xCO2

 N = F + R (T(x))

Murphy et al 1996, Senior and Mitchell 2000, Winton et al 
2010, Sherwood et al 2020,  Andrews et al 2018 , etc, etc, etc



The big questions:
NOAA ERSST 1979-2020

abrupt4xCO2

 N = F + R (T(x))

•  

•  

R (T(x))
N, F, T(x)
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General energy budget equation

 N = F + R (T(x))



Feedbacks are just Taylor series in disguise

Soden and Held 2008, Roe 2008
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Armour 2013, Rose et al 2014, Budyko 1969, Sellers 1969
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Zhou et al 2017, Dong et al 2019
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Green’s Function 

∂R
∂T(x)

λ
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T

Regional temperatures expansion 
(Correct)

Radiative response.     pattern

Zhou et al 2017, Dong et al 2019



Pattern effect: 
Long-term warming pattern 
Will actuate more  
Positive feedbacks 

λhist < λeq < 0

Pattern effect summary

∂R
∂T(x)

ΔT(x)
ΔT

λ = ∑ ×

historical

abrupt-4xCO2



Frameworks:

N = F + R (T(x))
Earth’s Energy Budget
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Frameworks:

N = F + R (T(x))
Earth’s Energy Budget

Time dependent feedbacks 
 

Murphy 1995, Senior and Mitchell 2000 

Heat uptake efficacy 
 

Winton et al 2010 

N = F + λ(t)T(t)

εN = F + λT

Stability 
  

Ceppi and Gregory 2020 
                 
Warm Pool 

 
Fueglistaler 2019, Dong et al 2019
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Time dependent feedback
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Time dependent feedback

abrupt-4xCO2
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Time dependent feedback

amip

abrupt-4xCO2

∂R
∂T(x)

T(x, t)
Tλ(t) =∑ ×
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Figure 1 | Evolution of decadal net and cloud feedbacks from CAM5.3 simulations. a, Shown are the 30-year net feedback estimates from AMIPFF
simulations, plotted at the midpoint of each 30-year period. Thin black lines are calculated from individual runs, and thick black lines are calculated from
ensemble mean values. Horizontal solid lines denote the long-term cloud feedbacks computed from uniform (orange) and patterned (red) future warming
experiments (see Methods). Dashed red/orange lines and grey shading denote 2� uncertainty intervals. b, Same as a, but for the cloud feedback.
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Figure 2 | Evolution of selected nine-year moving averaged quantities from CAM5.3 simulations. a, Global cloud-induced radiation anomaly in AMIPFF
simulations (blue), its components due to anomalies in PSST (red) and global mean surface temperature (orange), and their sum (black). b, Global low
cloud cover anomalies (1LCC) in all simulations. c, Tropical marine 1LCC in AMIPFF simulations (blue), its components due to estimated inversion
strength anomalies (1EIS) (purple), 1SST (orange), and their sum (black). d, Tropical marine 1EIS in AMIPFF simulations (purple), its components due to
1T(up, trp) (red, see Methods), 1SST (orange), and their sum (black).

the global 1Rcloud (r =�0.77). These low clouds strongly cool the
Earth’s climate system and play an important role in determining
the magnitude of cloud feedback9,14–16.

We explain tropicalmarine1LCCwith cloud-controlling factors.
An increase in EIS or decrease in SST would contribute positively
to LCC9,16–18, so tropical 1LCC can be explained by the linear
combination of tropical mean SST and EIS anomalies (Fig. 2c,
r=0.76), with EIS anomalies explaining more decadal variance in
LCC. Furthermore, changes in EIS are well explained (r =0.94) by

a linear combination of the tropical mean SST19 and the di�erence
between SST in tropical strong ascent regions and the tropical
mean SST (1T (up, trp), see Methods), with the latter explaining
more decadal variance in EIS (Fig. 2d). Physically, EIS increases
with this SST di�erence because free-tropospheric temperatures
throughout the tropics are controlled by the moist adiabat set by
the SST in tropical ascent regions20, whereas SSTs in tropical descent
regions a�ect the temperature of boundary layer only locally. As
a result, LCC variations over the twentieth century are primarily

872
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Time dependent feedback

followed by Gregory et al. (2004) and Andrews et al.
(2012a); Eq. (1) requires that a, 0 for the system to be
stable under perturbations.
The paradigm was first applied to equilibrium states,

such as CO2 doubling (2xCO2) scenarios that use an
atmospheric general circulation model (AGCM) cou-
pled to a simple thermodynamic mixed layer (‘‘slab’’)
oceanmodel (i.e., with prescribed ocean heat transport).
More recently, a constant a has been found to be an
excellent approximation under this idealized experi-
mental design during transient climate change, as dem-
onstrated by a linear dependence of N on DT in 2xCO2

experiments (e.g., Gregory and Webb 2008).
In contrast to idealized model studies of climate sen-

sitivity, real-world climate forcing and change are time
dependent and involve nonlinear coupled atmosphere–
ocean processes and heat exchanges between the ocean

mixed layer and deep ocean that require an AOGCM
(i.e., with a 3D dynamic ocean model) to simulate. The
linearity of Eq. (1) is found to be less robust in AOGCM
climate change simulations (see Fig. 1; Gregory et al.
2004; Andrews et al. 2012a; Armour et al. 2013; Geoffroy
et al. 2013; Block and Mauritsen 2013), which we in-
terpret as a nonconstant a, though other interpretations
can be drawn (see below). Nonetheless, we note that
linearity is a surprisingly good approximation for some
AOGCMs (e.g., Danabasoglu and Gent 2009; Andrews
et al. 2012a).
Recent work describing the time-dependent response

of AOGCMs has focused on developing new conceptual
frameworks fitted to AOGCM results. Winton et al.
(2010), Held et al. (2010), and Geoffroy et al. (2013)
used a two-layer ocean model (approximating a mixed
layer and deep-ocean response) and an ‘‘ocean heat

FIG. 1. Abrupt 4xCO2 Gregory plot (N as a function of DT ) for (a) HadCM3, (b) HadGEM2-ES, and (c) the
CMIP5 AOGCM mean. Lines show regression fits to the global annual-mean data points for years 1–20 (blue) and
subsequent years (red). The plots show global annual-mean data for the first 20 yr, followed by decadal means. The
slope and N intercept (DT 5 0) give the feedback parameter (a; Wm22K21) and effective radiative forcing
(F; Wm22), respectively. The DT intercept (N 5 0) estimates the equilibrium response assuming the feedback
strengths remain unchanged. The blue dotted line represents the path the AOGCMwould have taken to equilibrium
if it had maintained the feedback strengths as simulated during the early years of the experiment. (d) Comparison of
the net feedback parameter (a) diagnosed from the early (years 1–20) and subsequent (years 21–150) years. The
length (blue) and width (red) of the symbols in (d) represent their 95% confidence intervals (estimated by 1.96
standard deviations from the regression).

Fig(s). 1 live 4/C

15 FEBRUARY 2015 ANDREWS ET AL . 1631

scattering–absorption term [;0.3Wm22 in the CMIP5
multimodel mean, with a range (not shown) from ;0.0
to 1.0Wm22 across models], which we interpret as the
instantaneous SW absorption component of the 4xCO2

effective radiative forcing.

3. An evolving pattern of surface warming in
CMIP5 models

This section considers how an evolving pattern of
surface warming may drive the change in feedback
strengths identified in section 2. Figure 5 shows the

CMIP5 AOGCM-mean surface warming pattern [de-
termined fromOLS regression of localDT against global
DT (i.e., it is dimensionless: in KK21) and is unity in the
global mean] for the first 20 yr (Fig. 5a) and the re-
maining years (Fig. 5b). Figure 5c shows the change in
pattern (i.e., Fig. 5b2 Fig. 5a, which must be zero in the
global mean by construction). The zonal-mean surface
warming patterns for the individual models are shown in
Figs. 5d–f. Note that, as with Fig. 4, the BCC and BNU
models are excluded.
A large Northern Hemisphere (NH) polar amplifica-

tion is well established early on in the simulation in all

FIG. 5. Geographical distribution of the pattern of surface air temperature change for (a) years 1–20, (b) years 21–
150, and (c) their difference for the CMIP5 AOGCMmean. Plots show the slope of the linear regression of local DT
against global DT for the relevant time periods and are dimensionless. By construction, the global mean of (a),(b) is
unity, while (c) is zero. (d)–(f) The zonal-mean patterns (red lines), where thin lines are individual CMIP5 models.
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Figure 1. Summary of the pattern effect on passive ocean heat uptake. (a) Distribution of CMIP5 ensemble-mean
sea surface temperature anomaly (ΔSSTc), averaged between years 100 and 140. (b) Comparison of OHUp(t)
for the spatially varying experiment (forced with the pattern ΔSSTc, green solid), spatially uniform experiment
(forced everywhere at the same global mean rate, ΔSSTc, green dashed), as compared to the CMIP5
ensemble-mean OHU(t) (black solid). (c) Global ventilation fraction (VF) per patch, which is defined as
VF( !) = ∫ ∞

0 Gv( !, t)dt∕∑26
!=0 ∫ ∞

0 Gv( !, t)dt and is approximated here by truncating the time integral at 350 years.
(d) Total heat uptake per patch (see Equation 4) averaged for years 100–140. This total uptake results from the
covariance of ΔSST (a) and GV (b). (e) Fraction of total patch heat uptake for the spatially varying experiment
(OHUSV

p ) divided by patch uptake in the spatially uniform experiment (OHUSV
p ), or OHUSV

p ∕OHUSU
p .

at time 0 for points over patch j, and zero elsewhere and for t > 0 (Holzer & Hall, 2000; Khatiwala et al., 2001;
Primeau, 2005). When integrated over all interior points, ri, the GF

GV ( !, t) = ∫Vi

G( !, ri, t)d3ri,

quantifies the total fraction of waters last in contact with (ventilated from) patch j at t = 0 that remain in the
interior at time t (Holzer & Hall, 2000; Khatiwala et al., 2012).

2.3. Passive Ocean Heat Uptake Using GFs
A GF representation of the ocean is particularly useful for emulating passive ocean heat uptake. Specifically,
the global integral of heat passively absorbed (or, OHCp, with the subscript p for “passive”), between an
initial time t = 0, when the system is assumed to be in a steady state, and a later time t, due to the SST
anomalies within patch j during that time interval is given by (e.g., Zanna et al., 2019)

OHCp( !, t) = "0cp ∫
t

0
ΔSST( !, t′)GV ( !, t − t′)dt′. (2)

Here, ΔSST(j, t) is the average SST anomaly over patch j at time t, and "0 and cp are a reference density and
the heat capacity of seawater, respectively. Note that the heat sourced in each patch is dispersed throughout
the ocean depending on local ventilation characteristics (i.e., GV ). The rate of passive ocean heat uptake per
patch, OHUp(j, t), can thus be expressed as

OHUp( !, t) = 1
A( !)

d
dt OHCp( !, t) =

"0cp

A( !)
d
dt ∫

t

0
ΔSST( !, t)GV ( !, t − t′)dt′, (3)
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south of the intertropical convergence zone (ITCZ).
Because of the northward placement of the ITCZ from
the equator, only the internal atmospheric variability of
Southern Hemisphere origin can reach the equator and
exert significant impact on equatorial eastern Pacific
variability through surface turbulent heat flux (Liu and
Xie 1994; Xie and Philander 1994; Okumura 2013). As a
result, the tropical Pacific tends to be more tightly cou-
pled to the South Pacific than the North Pacific in slab
ocean AGCM (e.g., Zhang et al. 2014a,b). In the North
Atlantic basin, the neutral vector shows a tripolar pat-
tern resembling the AMO. Since the neutral vector here
represents the most excitable mode in a slab model
without ocean variability, this SST variability pattern
can only be of atmospheric origin, lending some support
to the notion that the IPO- and AMO-like variability
can exist in a slab ocean under stochastic atmospheric
forcing (Clement et al. 2011, 2015). The dominant pat-
terns of the wind stress and sea level pressure (SLP),
obtained by regressing onto the neutral vector time
series, also correspond well with their observed counter-
parts (Clement et al. 2011; Okumura 2013; Dong and
McPhaden 2017). However, we caution against equating
this result to the evidence for the atmospheric origin for
the multidecadal oscillation of the SST, as the power
spectrum of the first neutral vector shows no significant
peak at decadal–multidecadal scales (Fig. 10a, red line).
Interestingly, a striking similarity is found between our
leading neutral vectors and themost predictable modes of
internal variability in Srivastava and DelSole (2017): Our

first neutral vector corresponds to their first most pre-
dictable mode, and our second and fourth neutral vectors
(Fig. 11), characterized by interhemispheric asymmetric
pattern and ENSO pattern, closely resemble their second
and third most predictable modes, respectively.
To check if the first neutral vector is of any relevance

to the most excitable mode in a climate system with
active ocean dynamics, we construct LFDT using the FDT
approach based on a 1000-yr-long control simulation of
the fully coupled CESM1.1. The resultant coupled first
neutral vector is shown in Fig. 9c, which exhibits con-
siderable spatial similarity to its CESM–SOM counter-
part, especially in the IPO- and AMO-like patterns.
Therefore, the first neutral vector revealed by our
Green’s function experiments with CESM–SOM indeed
represents the most excitable mode of SST, irrespective
of coupling to the ocean dynamics or not.
The first left singular vector of the LRF, representing

the q-flux forcing that can optimally excite the corre-
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with CESM–SOM and the long coupled CESM simu-
lation (Figs. 9b,d). Given the different methods used for
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Summary slide Option 1

followed by Gregory et al. (2004) and Andrews et al.
(2012a); Eq. (1) requires that a, 0 for the system to be
stable under perturbations.
The paradigm was first applied to equilibrium states,

such as CO2 doubling (2xCO2) scenarios that use an
atmospheric general circulation model (AGCM) cou-
pled to a simple thermodynamic mixed layer (‘‘slab’’)
oceanmodel (i.e., with prescribed ocean heat transport).
More recently, a constant a has been found to be an
excellent approximation under this idealized experi-
mental design during transient climate change, as dem-
onstrated by a linear dependence of N on DT in 2xCO2

experiments (e.g., Gregory and Webb 2008).
In contrast to idealized model studies of climate sen-

sitivity, real-world climate forcing and change are time
dependent and involve nonlinear coupled atmosphere–
ocean processes and heat exchanges between the ocean

mixed layer and deep ocean that require an AOGCM
(i.e., with a 3D dynamic ocean model) to simulate. The
linearity of Eq. (1) is found to be less robust in AOGCM
climate change simulations (see Fig. 1; Gregory et al.
2004; Andrews et al. 2012a; Armour et al. 2013; Geoffroy
et al. 2013; Block and Mauritsen 2013), which we in-
terpret as a nonconstant a, though other interpretations
can be drawn (see below). Nonetheless, we note that
linearity is a surprisingly good approximation for some
AOGCMs (e.g., Danabasoglu and Gent 2009; Andrews
et al. 2012a).
Recent work describing the time-dependent response

of AOGCMs has focused on developing new conceptual
frameworks fitted to AOGCM results. Winton et al.
(2010), Held et al. (2010), and Geoffroy et al. (2013)
used a two-layer ocean model (approximating a mixed
layer and deep-ocean response) and an ‘‘ocean heat

FIG. 1. Abrupt 4xCO2 Gregory plot (N as a function of DT ) for (a) HadCM3, (b) HadGEM2-ES, and (c) the
CMIP5 AOGCM mean. Lines show regression fits to the global annual-mean data points for years 1–20 (blue) and
subsequent years (red). The plots show global annual-mean data for the first 20 yr, followed by decadal means. The
slope and N intercept (DT 5 0) give the feedback parameter (a; Wm22K21) and effective radiative forcing
(F; Wm22), respectively. The DT intercept (N 5 0) estimates the equilibrium response assuming the feedback
strengths remain unchanged. The blue dotted line represents the path the AOGCMwould have taken to equilibrium
if it had maintained the feedback strengths as simulated during the early years of the experiment. (d) Comparison of
the net feedback parameter (a) diagnosed from the early (years 1–20) and subsequent (years 21–150) years. The
length (blue) and width (red) of the symbols in (d) represent their 95% confidence intervals (estimated by 1.96
standard deviations from the regression).
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scattering–absorption term [;0.3Wm22 in the CMIP5
multimodel mean, with a range (not shown) from ;0.0
to 1.0Wm22 across models], which we interpret as the
instantaneous SW absorption component of the 4xCO2

effective radiative forcing.

3. An evolving pattern of surface warming in
CMIP5 models

This section considers how an evolving pattern of
surface warming may drive the change in feedback
strengths identified in section 2. Figure 5 shows the

CMIP5 AOGCM-mean surface warming pattern [de-
termined fromOLS regression of localDT against global
DT (i.e., it is dimensionless: in KK21) and is unity in the
global mean] for the first 20 yr (Fig. 5a) and the re-
maining years (Fig. 5b). Figure 5c shows the change in
pattern (i.e., Fig. 5b2 Fig. 5a, which must be zero in the
global mean by construction). The zonal-mean surface
warming patterns for the individual models are shown in
Figs. 5d–f. Note that, as with Fig. 4, the BCC and BNU
models are excluded.
A large Northern Hemisphere (NH) polar amplifica-

tion is well established early on in the simulation in all

FIG. 5. Geographical distribution of the pattern of surface air temperature change for (a) years 1–20, (b) years 21–
150, and (c) their difference for the CMIP5 AOGCMmean. Plots show the slope of the linear regression of local DT
against global DT for the relevant time periods and are dimensionless. By construction, the global mean of (a),(b) is
unity, while (c) is zero. (d)–(f) The zonal-mean patterns (red lines), where thin lines are individual CMIP5 models.
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FIG. 5. Geographical distribution of the pattern of surface air temperature change for (a) years 1–20, (b) years 21–
150, and (c) their difference for the CMIP5 AOGCMmean. Plots show the slope of the linear regression of local DT
against global DT for the relevant time periods and are dimensionless. By construction, the global mean of (a),(b) is
unity, while (c) is zero. (d)–(f) The zonal-mean patterns (red lines), where thin lines are individual CMIP5 models.
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Figure 1 | Evolution of decadal net and cloud feedbacks from CAM5.3 simulations. a, Shown are the 30-year net feedback estimates from AMIPFF
simulations, plotted at the midpoint of each 30-year period. Thin black lines are calculated from individual runs, and thick black lines are calculated from
ensemble mean values. Horizontal solid lines denote the long-term cloud feedbacks computed from uniform (orange) and patterned (red) future warming
experiments (see Methods). Dashed red/orange lines and grey shading denote 2� uncertainty intervals. b, Same as a, but for the cloud feedback.
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Figure 2 | Evolution of selected nine-year moving averaged quantities from CAM5.3 simulations. a, Global cloud-induced radiation anomaly in AMIPFF
simulations (blue), its components due to anomalies in PSST (red) and global mean surface temperature (orange), and their sum (black). b, Global low
cloud cover anomalies (1LCC) in all simulations. c, Tropical marine 1LCC in AMIPFF simulations (blue), its components due to estimated inversion
strength anomalies (1EIS) (purple), 1SST (orange), and their sum (black). d, Tropical marine 1EIS in AMIPFF simulations (purple), its components due to
1T(up, trp) (red, see Methods), 1SST (orange), and their sum (black).

the global 1Rcloud (r =�0.77). These low clouds strongly cool the
Earth’s climate system and play an important role in determining
the magnitude of cloud feedback9,14–16.

We explain tropicalmarine1LCCwith cloud-controlling factors.
An increase in EIS or decrease in SST would contribute positively
to LCC9,16–18, so tropical 1LCC can be explained by the linear
combination of tropical mean SST and EIS anomalies (Fig. 2c,
r=0.76), with EIS anomalies explaining more decadal variance in
LCC. Furthermore, changes in EIS are well explained (r =0.94) by

a linear combination of the tropical mean SST19 and the di�erence
between SST in tropical strong ascent regions and the tropical
mean SST (1T (up, trp), see Methods), with the latter explaining
more decadal variance in EIS (Fig. 2d). Physically, EIS increases
with this SST di�erence because free-tropospheric temperatures
throughout the tropics are controlled by the moist adiabat set by
the SST in tropical ascent regions20, whereas SSTs in tropical descent
regions a�ect the temperature of boundary layer only locally. As
a result, LCC variations over the twentieth century are primarily
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