The "Pattern Effect": Conceptual Frameworks US CLIVAR Pattern Effect Workshop 5/10/2022

Cristi Proistosescu Climate Dynamics and Data Science University of Illinois at Urbana Champaign

Global feedback framework and it's failure

- A refined view of the radiative response
- Open Questions
 - Radiative response
 - Forcing and heat uptake
 - Patterns

Gregory et al., 2002; Ridley et al., 2008; Winton, 2006, 2008, 2011. Specifically, Energy Budget the arguments of Winton [2011], relating hemispheric ice cover to global forcing

 $\overline{N} = \overline{F} + \overline{R}$

(2)

(1)

(3)

Gregory et al., 2002; Ridley et al., 2008; Winton, 2006, 2008, 2011. Specifically, the arguments of Winton [2011]. relating hemispheric ice cover to global forcing

Radiative feedback λ

 $\overline{N} = \overline{F} + \lambda \overline{T}$

(2)

 (\perp)

(3)

Gregory et al., 2002, maley et al., 2000, willion, 2000, 2000, 2011. Specifically, If you know λ you know ECS the arguments of *Winton* [2011], relating hemispheric ice cover to global forcing

$$\overline{N} = \overline{F} + \lambda \overline{T}$$

Equilibrium:
$$\overline{N} \stackrel{(2)}{=} 0$$

 $\overline{T}_{eq} = \frac{\overline{F}}{\lambda}_{(3)}$

Gregory et al 2002, Otto et al 2013, Forster 2016

abrupt4xCO2

Turns out radiative response is complicated

NOAA ERSST 1979-2020

abrupt4xCO2

 $\overline{N} = \overline{F} + \overline{R} \left(T(x) \right)$

Murphy et al 1996, Senior and Mitchell 2000, Winton et al 2010, Sherwood et al 2020, Andrews et al 2018, etc, etc, etc

The big questions:

NOAA ERSST 1979-2020

abrupt4xCO2

 $\overline{N} = \overline{F} + \overline{R}\left(T(x)\right)$

- $\overline{R}(T(x))$
- •N, F, T(x)

Global feedback framework and it's failure

• A refined view of the radiative response

- Open Questions
 - Radiative response
 - Forcing and heat uptake
 - Patterns

Roadmap

General energy budget equation

 $\overline{N} = \overline{F} + \overline{R}\left(T(x)\right)$

Feedbacks are just Taylor series in disguise

$\overline{N} = \overline{F}$

Global temperature expansion

$$\overline{r} + \overline{R}(T(x))$$

Soden and Held 2008, Roe 2008

$\overline{N} = \overline{F}$

Global temperature expansion

Feedbacks are just Taylor series in disguise

$$\overline{F} + \overline{R}(T(x))$$

Regional temperatures expansion (WRONG)

$$\overline{R} \approx \sum_{x} \frac{\partial R(x)}{\partial T(x)} T(x)$$

Armour 2013, Rose et al 2014, Budyko 1969, Sellers 1969

Nonlocal effects matter

Global temperature expansion

 $\overline{N} = \overline{F} + \overline{R}\left(T(x)\right)$

Regional temperatures expansion (Correct)

$$\overline{R} \approx \sum_{x,y} \frac{\partial R(y)}{\partial T(x)} T(x)$$

Zhou et al 2017, Dong et al 2019

Nonlocal effects matter

$$\overline{N} = \overline{I}$$

Global temperature expansion

 $\overline{F} + \overline{R} \left(T(x) \right)$

Regional temperatures expansion (Correct)

$$\overline{R} \approx \sum_{x} \frac{\partial \overline{R}}{\partial T(x)} T(x)$$

Zhou et al 2017, Dong et al 2019

$$\overline{N} = \overline{I}$$

Global temperature expansion

 $\overline{F} + \overline{R} \left(T(x) \right)$

Regional temperatures expansion (Correct)

Nonlocal effects matter

$$\overline{N} = \overline{F} + \overline{R}\left(T(x)\right)$$

Global temperature expansion

Zhou et al 2017, Dong et al 2019

Regional temperatures expansion (Correct) $\partial \overline{R} \quad T(x)$ $\overline{R} \approx$ Radiative response. pattern

Pattern effect summary

Pattern effect:

Long-term warming pattern Will actuate more Positive feedbacks

 $\lambda_{hist} < \lambda_{eq} < 0$

Earth's Energy Budget $\overline{N} = \overline{F} + \overline{R} \left(T(x) \right)$

Earth's Energy Budget $\overline{N} = \overline{F} + \overline{R} \left(T(x) \right)$

Time dependent feedbacks $N = F + \lambda(t)T(t)$ Murphy 1995, Senior and Mitchell 2000

Heat uptake efficacy $\varepsilon N = F + \lambda T$ Winton et al 2010

Stability $N = F + \lambda T + \beta S$ Ceppi and Gregory 2020

Warm Pool $N = F + \alpha T + \gamma T^{\#}$ Fueglistaler 2019, Dong et al 2019

Earth's Energy Budget $\overline{N} = \overline{F} + \overline{R} \left(T(x) \right)$

Time dependent feedbacks $N = F + \lambda(t)T(t)$ Murlpy 1995, Senior and Mitchell 2000

Heat uptake efficacy $\varepsilon N = F + \lambda T$ Winton 2010

Stability $N = F + \lambda T + \beta S$ Ceppi and Gregory 2020

Warm Pool $N = F + \alpha T + \gamma T^{\#}$ Fueglistaler 2019, Dong et al 2019

Time dependent feedback

Time dependent feedback

Time dependent feedback

Time dependent feedback $\lambda(t)$ $\sum_{x} \frac{\partial \overline{R}}{\partial T(x)} \frac{T(x,t)}{\overline{T}} \overline{T}$ T(x,t) $\overline{N} = \overline{F} - \left| \right\rangle$ Х \mathcal{X} (a) Years 1-20 warming pattern 90N (c) CMIP5 AOGCM-mean 45N 6 45S 90S \overline{N} 90E 180 90W 4 -2 -1.5 0.5 1 1.5 2 -1 -0.5 0 (b) Years 21-150 warming pattern Years 1-20 90N Years 21-150 45N 5 6 20 0 $(W/m^2)/K$ 0 J 45S 90S 90E 180 90W $\mathbf{0}$ Andrews et al 2015 1.5 2 -0.5 0 0.5 -2 -1.5 -1 1

Warning: do not confuse these two:

Warning: do not confuse these two:

Earth's Energy Budget $\overline{N} = \overline{F} + \overline{R} \left(T(x) \right)$

Time dependent feedbacks $N = F + \lambda(t)T(t)$ Murlpy 1995, Senior and Mitchell 2000

Heat uptake efficacy $\varepsilon N = F + \lambda T$ Winton 2010

Stability $N = F + \lambda T + \beta S$ Ceppi and Gregory 2020

Warm Pool $N = F + \lambda T + \gamma T^{\#}$ Fueglistaler 2019

Equilibrium $0 = \overline{F} + \lambda T$

$$CO_2$$
$$0 = \overline{F}_{CO_2} + \lambda_{CO_2} T$$

Ocean Heat Uptake $0 = -N + \lambda_{OHU}T$

Hansen 1995, Winton et al 2010

Equilibrium $0 = \overline{F} + \lambda T$

$$CO_2$$
$$0 = \overline{F}_{CO_2} + \lambda_{CO_2} T$$

Ocean Heat Uptake

$$0 = - \varepsilon_N N + \lambda_{CO_2} T$$

Hansen 1995, Winton et al 2010

$$CO_2$$
$$0 = \overline{F}_{CO_2} + \lambda_{CO_2} T$$

Ocean Heat Uptake

$$0 = - \varepsilon_N N + \lambda_{CO_2} T$$

Winton et al 2010, Held et al 2010

 $\varepsilon_N = \frac{\lambda_{CO_2}}{\lambda_N} =$

 $T_{CO_2}(x)$ $\partial \overline{R}$ \overline{T}_{CO_2} $\partial T(x)$ λ_{CO} ${\mathcal X}$ \mathcal{E}_N λ_N $T_N(x)$ $\partial \overline{R}$ \overline{T}_N ${\mathcal X}$

(c) = (b)-(a) Change in warming pattern 90N

Earth's Energy Budget $\overline{N} = \overline{F} + \overline{R} \left(T(x) \right)$

Time dependent feedbacks $N = F + \lambda(t)T(t)$ Murlpy 1995, Senior and Mitchell 2000

Heat uptake efficacy $\varepsilon N = F + \lambda T$ Winton 2010

Warm Pool $N = F + \alpha T + \gamma T^{\#}$ Fueglistaler 2019 Stability $N = F + \lambda T + \beta S$ Ceppi and Gregory 2020

Radiative response dominated by warm pool

$N = F + \alpha T + \gamma T^{\#}$

Fueglistaler 2019, Dong et al 2019

Warm pool location varies between models and in time

Global feedback framework and it's failure

• A refined view of the radiative response

• **Open Questions**

- Radiative response
- Forcing and heat uptake
- Patterns

Open questions: Green's Function is not quantitative

Nonlinearity? T(

Non-geographical framework?

Observational constrained? (~150 DOFs)

$$(x)^2, T(x) \cdot T(y)?$$

Open questions: Warming Patterns

 $N(t) = \overline{F} + \overline{R}\left(T(x,t)\right)$

amip

abrupt-4xCO2

Open questions: Warming Patterns

 $N(t) = \overline{F} + \overline{R}\left(T(x,t)\right)$

amip

$T(x,t) = \sum \psi(x)\phi(t)?$

abrupt-4xCO2

Internal Variability: **ENSO**? **bDO**S **IbO**5 **VMO**S

Forced Response? CO2 - fast/slow mode? Aerosols Volcanoes Meltwater

Open questions: Coupled problem

Open questions: Coupled problem

Open questions: Climate Dynamics

Open questions: Climate Dynamics

abrupt-4xCO2

Open questions: Near-term warming

Gregory and Mitchell 1997, Held et al 2010

abrupt-4xCO2

Open questions: Near-term warming

Gregory and Mitchell 1997, Held et al 2010

Summary slide Option 2

AMIPFF

PSST

Supplementary

Global-temperature

Roe et al 2008

Feedbacks are just Taylor Series in disguise

Armour et al 2013 Proistosescu & Huybers 2017

Anatomy of a low cloud feedback

 $\Delta \overline{R} \approx \sum_{x,y} \frac{\partial R(y)}{\partial M(y)} \frac{\partial M(y)}{\partial T(x)} \frac{\Delta T(x)}{\Delta \overline{T}} \Delta \overline{T}$ Meteorology Warming pattern

Klein et al 2017 Scott et al 2020 Myers et al 2022

Anatomy of a low cloud feedback

 $\Delta \overline{R} \approx$

Cloud fraction Cloud Radiative Effect

Klein et al 2017 Scott et al 2020 Myers et al 2022

Anatomy of a low cloud feedback

 $\Delta \overline{R} \approx \sum_{x,y} \frac{\partial R(y)}{\partial C(\tau, p, y)} \frac{\partial C(\tau, p, y)}{\partial M(y)} \frac{\partial M(y)}{\partial T(x)} \frac{\Delta T(x)}{\Delta \overline{T}} \Delta \overline{T}$

Radiative Transfer

Tropical Climate Dynamics

Wood & Bretherton 2006 Klein & Hartmann 1993 Arakawa 1975 Stevens 2005

Trade inversion

Response to East Pacific warming

Trade inversion

Response to East Pacific warming

SW

Response to East Pacific warming

SW

Warming the cool tropical SSTs

Positive (downward) radiative response

Zhou et al 2017 Dong et al 2019

Trade inversion

Trade inversion

Warming the warmest SSTs

Negative (outgoing) radiative response

Trade SW inversion

