Diagnostics (developed for operational forecast system) applied to ERA5

Mark Rodwell

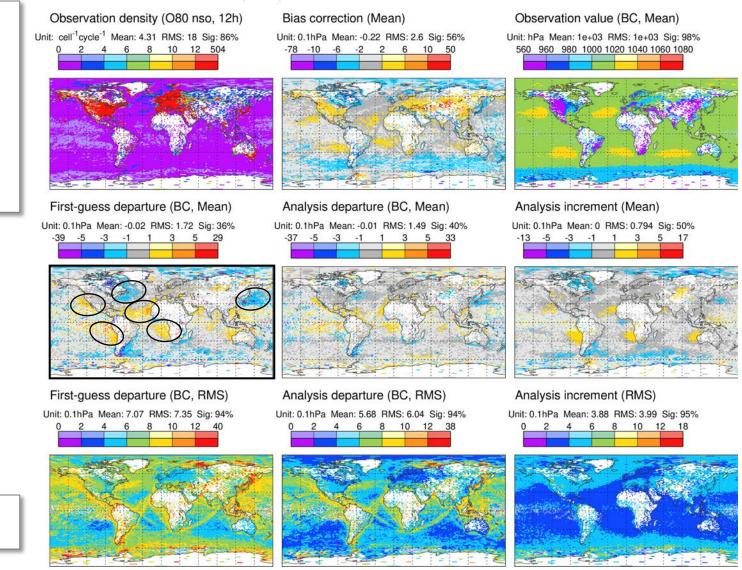
Workshop on Future US Earth System Reanalysis

Boulder, CO (virtual)

17 May 2022

Thanks to: The creators and archivers of ERA5

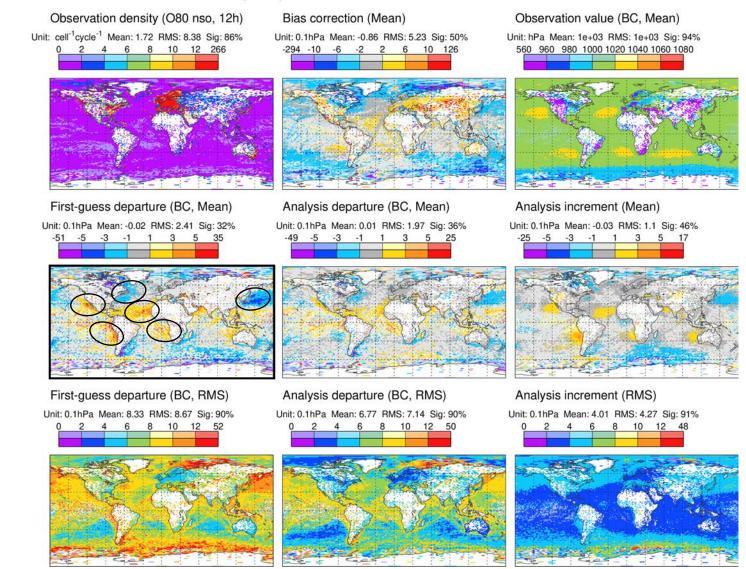
European Centre for Medium-Range Weather Forecasts


Mark J Rodwell

Diagnostics of ERA5 EDA control for surface pressure observations – 2010-2019

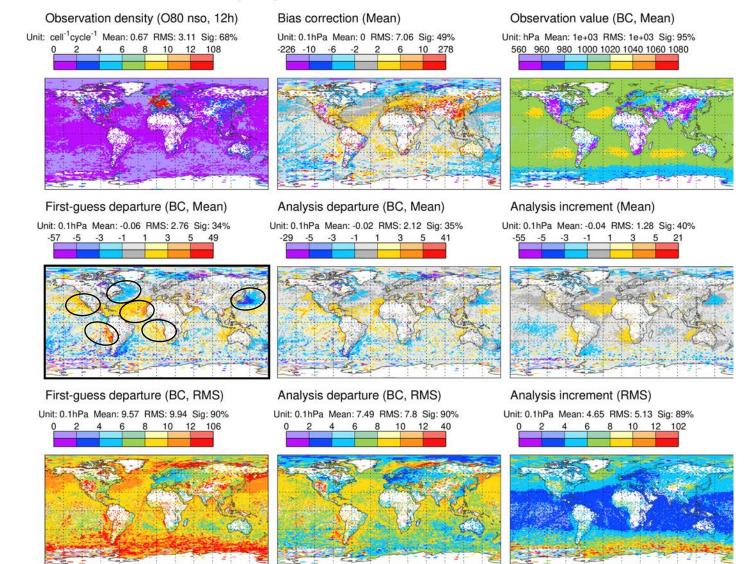
Observation:	0
Background:	b
Analysis:	а
Variational bias correction:	O-O _{BC}
First-guess departure:	o _{BC} -b
Analysis departure:	o _{BC} -a
Analysis increment:	a-b

Eda Observations. CONV pSFC for ANN_2010010100-2019123112. Deep colours = 5% sig. (AR1) Conventional surface observations (BRPA)



Decadal-means give coverage over most ocean regions

Mean first-guess departures show re-distribution of mass by the model – Subtropical anticyclones and storm tracks are key climate uncertainties

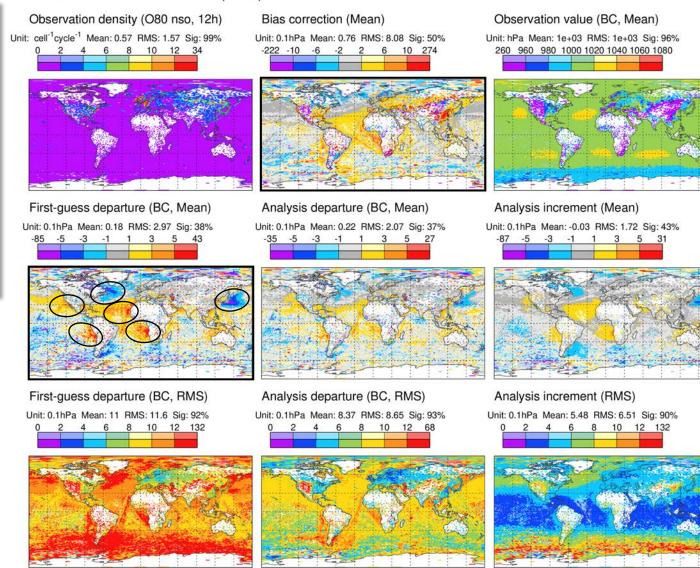

Eda Observations. CONV pSFC for ANN_2000010100-2009123112. Deep colours = 5% sig. (AR1) Conventional surface observations (BRPA)

Departures and increments grow

Eda Observations. CONV pSFC for ANN_1990010100-1999123112. Deep colours = 5% sig. (AR1) Conventional surface observations (BRPA)

Departures and increments continue to grow

Diagnostics of ERA5 EDA control – 1980-1989

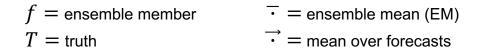

Trend of increasing mean first-guess departures \Rightarrow trend in analysis bias \Rightarrow erroneous component to re-analysis trend

Sparser observations, more impact of model bias, need for model error representation

Bias correction strengthens (particularly over Atlantic) – it incorrectly absorbs some of the departures: $o-b = (o-o_{BC}) + (o_{BC}-b)$

Problem can be underestimated

Eda Observations. CONV pSFC for ANN_1980010100-1989123112. Deep colours = 5% sig. (AR1) Conventional surface observations (BRPA)


Trend in first-guess departures and bias corrections \Rightarrow Erroneous analysis trends – Require model error representation and tuning of VarBC?

Rodwell et al (2016), doi: 10.1002/qj.2663

The error-spread equation*:

$$\overline{\left(\overline{f} - T\right)^{2}} = \overline{\left(\overline{f} - \overline{f}\right)^{2}} + \overline{R}$$

EM Error² EnsVar Residual

Reliability \Rightarrow Truth indistinguishable from forecast members \Rightarrow Residual \rightarrow 0

* Adjustment factor $\frac{m+1}{m-1}$ to EnsVar, which accounts for variance in \overline{f} (in Error² and EnsVar) due to finite ensemble size m, is not shown.

When observations of the truth have non-negligible errors, and we explicitly account for mean bias**:

$$\overline{\left\{\left(\,\overline{b}-o\right)-\overline{\left(\overline{b}-o\right)}\right\}^2}$$

 $= \overline{\overline{\left\{(b+\delta o)-\overline{b}\right\}^2}} + \overline{R}$

EM departure² (mean bias removed)

- ENS variance (with observation error perturbations)
- Residual (uncertainty deficit, variance in bias)

Rearranging gives us the EDA reliability budget***:

$$\overrightarrow{\left(\overline{b}-o\right)^{2}} = \overrightarrow{\left(\overline{b}-\overline{b}\right)^{2}} + \overrightarrow{\overline{\delta o^{2}}} + \left(\overrightarrow{\overline{b}-o}\right)^{2} + \overrightarrow{R}$$

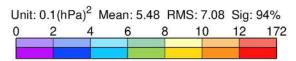
EM Depar² EnsVar ObsUnc² Bias² Residual

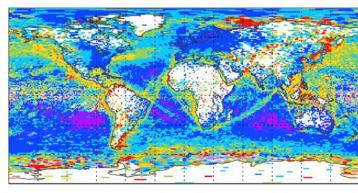
Reliability \Rightarrow Bias $\rightarrow 0$ and Residual $\rightarrow 0$

- b = background member
- o = observation

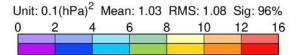
 $\delta o =$ obs perturbation to b

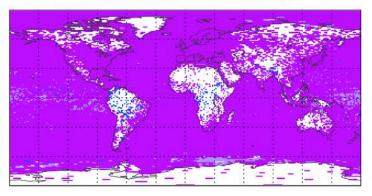
** Adjustment factors (which $\rightarrow 1$ for large *m* and large forecast sample size *n*) are not shown. In EDA $\overline{\delta o} \equiv 0$.

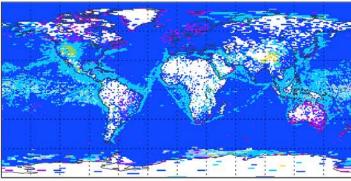



^{***} Adjustment factors not shown. Note that $\overline{2\delta o(b-\overline{b})}$ subsumed into Residual, but \rightarrow 0 in any case.

Reliability budget of ERA5 EDA for surface pressure observations – 2010-2019


Eda Observations. CONV pSFC for ANN_2010010100-2019123112. Deep colours = 5% sig. (AR1) Conventional surface observations (BRPA)

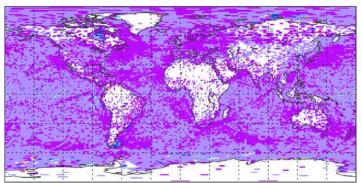

Depar²

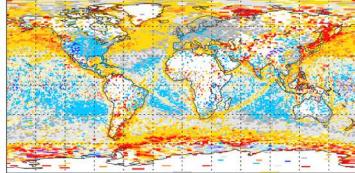

EnsVar

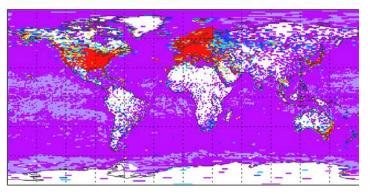
ObsUnc²

Unit: 0.1(hPa)² Mean: 3.2 RMS: 3.37 Sig: 96% 0 2 4 6 8 10 12 14

Bias²

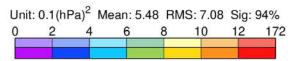

Unit: 0.1(hPa)² Mean: 0.28 RMS: 2.44 Sig: 37% 0 2 4 6 8 10 12 166

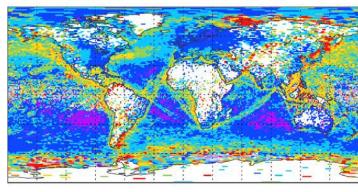

Residual


Unit:	0.1(hF	Pa) ² №	lean: 0.	95 RN	AS: 3.2	9 Sig:	56%
-17	-5	-3	-1	1	3	5	111
		_					5

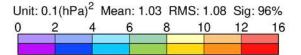
Observation density (O80 nso, 12h)

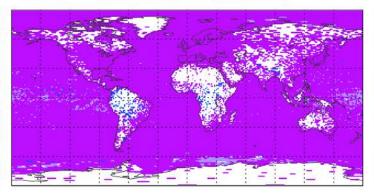
Unit: cell⁻¹cycle⁻¹ Mean: 4.31 RMS: 18 Sig: 86% 0 4 8 12 16 20 24 504



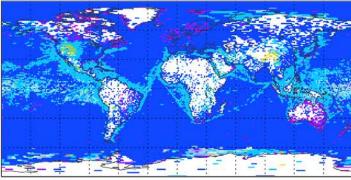


Reliability budget of ERA5 EDA – 2010-2019 (residual re-scaled for decadal comparison)

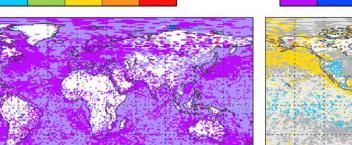

Eda Observations. CONV pSFC for ANN_2010010100-2019123112. Deep colours = 5% sig. (AR1) Conventional surface observations (BRPA)

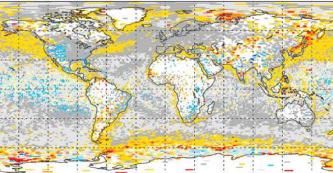

Depar²

EnsVar

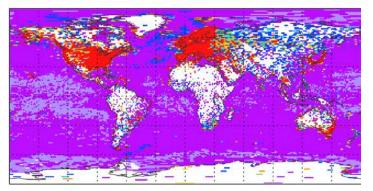


Residual


ObsUnc²

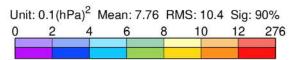

Unit: 0.1(hPa)² Mean: 3.2 RMS: 3.37 Sig: 96% 0 2 4 6 8 10 12 14

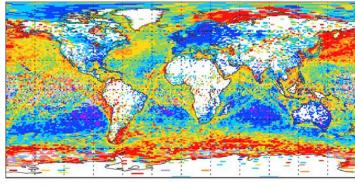
Bias²


Unit: 0.1(hPa)² Mean: 0.28 RMS: 2.44 Sig: 37% 0 2 4 6 8 10 12 166

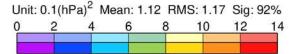
Observation density (O80 nso, 12h)

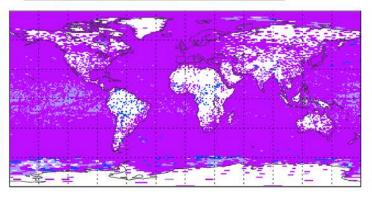
Unit: cell⁻¹cycle⁻¹ Mean: 4.31 RMS: 18 Sig: 86% 0 2 4 6 8 10 12 504

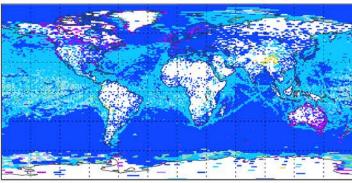

Residual looks better when scaled to compare with previous decades!



Reliability budget of ERA5 EDA – 2000-2009


Eda Observations. CONV pSFC for ANN_2000010100-2009123112. Deep colours = 5% sig. (AR1) Conventional surface observations (BRPA)


Depar²


EnsVar

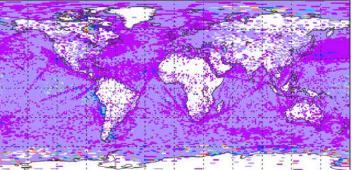
) 2 4 6

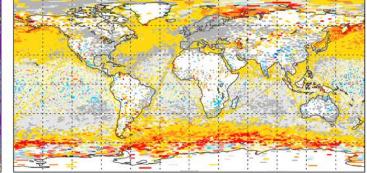
ObsUnc²

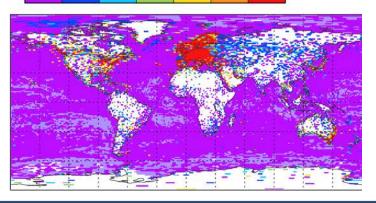
8 10 12 14

Unit: 0.1(hPa)² Mean: 3.68 RMS: 3.88 Sig: 91%

Bias²

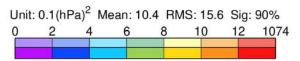

Unit: 0.1(hPa)² Mean: 0.52 RMS: 2.91 Sig: 36% 0 2 4 6 8 10 12 178

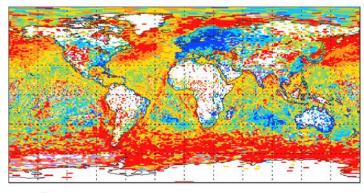

Residual


Unit	: 0.1(hF	a) ² M	ean: 2.	42 RM	1S: 6.2	I Sig:	56%
-14	-10	-6	-2	2	6	10	274
				-			3

Observation density (O80 nso, 12h)

Unit: cell⁻¹cycle⁻¹ Mean: 1.72 RMS: 8.38 Sig: 86% 0 2 4 6 8 10 12 266

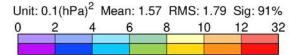


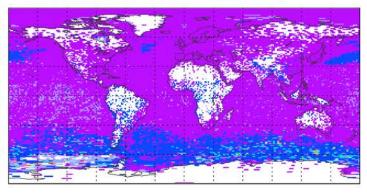

9

Reliability budget of ERA5 EDA – 1990-1999

Eda Observations. CONV pSFC for ANN_1990010100-1999123112. Deep colours = 5% sig. (AR1) Conventional surface observations (BRPA)

Depar²

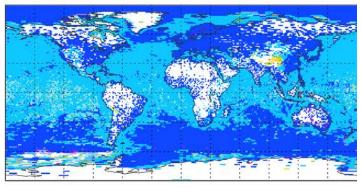




Bias²

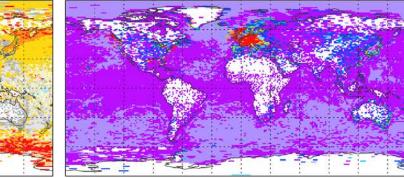
Unit: 0.1(hPa)² Mean: 0.69 RMS: 4.7 Sig: 35% 0 2 4 6 8 10 12 280

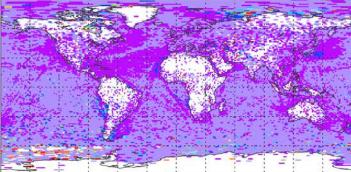
EnsVar



Residual

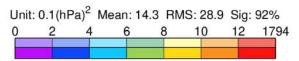
Unit	0.1(hF	a) ² M	ean: 4.	02 RM	IS: 9.7	2 Sig:	58%
-26	-10	-6	-2	2	6	10	786
				-			


ObsUnc²


Unit: 0.1(hPa)² Mean: 4.15 RMS: 4.33 Sig: 92% 0 2 4 6 8 10 12 16

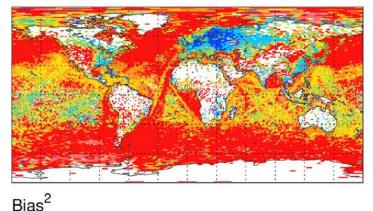
Observation density (O80 nso, 12h)

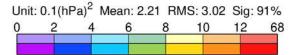
Unit: cell⁻¹cycle⁻¹ Mean: 0.67 RMS: 3.11 Sig: 68% 0 2 4 6 8 10 12 108

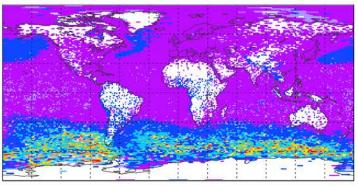

Under-spread increasingly apparent in the stormtracks (particularly over the Southern Ocean)

Reliability budget of ERA5 EDA - 1980-1989

Eda Observations. CONV pSFC for ANN_1980010100-1989123112. Deep colours = 5% sig. (AR1) Conventional surface observations (BRPA)

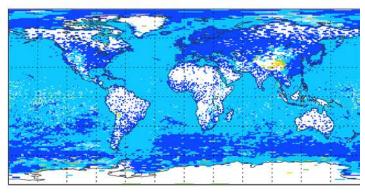

Depar²


Unit: 0.1(hPa)² Mean: 0.89 RMS: 7.16 Sig: 40%


8

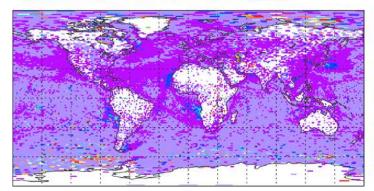
6

EnsVar

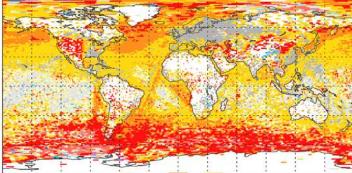


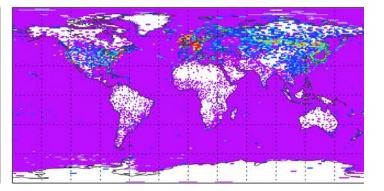
Residual

Unit:	0.1(hP	a) ² M	lean: 6.	68 RM	IS: 21.8	5 Sig:	70%
-70	-10	-6	-2	2	6	10	1682
A							


ObsUnc²

Unit: 0.1(hPa)² Mean: 4.5 RMS: 4.66 Sig: 94% 0 2 4 6 8 10 12 56




Observation density (O80 nso, 12h)

Unit: cell⁻¹cycle⁻¹ Mean: 0.57 RMS: 1.57 Sig: 99% 0 2 4 6 8 10 12 34

10 12 712

Going back in time:

Sparser observations leave re-analysis at the mercy of model bias

- Tackle with "Weak Constraint" (model error term) in assimilation
- To prevent climate projection biases, improve underlying model
- Attention to variational observation bias correction too

Larger uncertainty (but not large enough)

- False impression of accuracy of product
- Unreliable initialisation of re-forecasts
- Due to under-estimation of uncertainties in SST or early satellite observations?

Operational diagnostics applied to ERA5 are available at:

https://apps.ecmwf.int/webapps/intraplots/packages/diagnostics/ (Move of computing facilities to Bologna so can be a little intermittent)

