The pattern effect:

perspectives and his’ccry

Maria Rugenstein with input from Cristi Proistosescu,

Kvyle Armour, Yue Dong, Kris Karnauskas, and Norman Loeb



5.5 forced
+5 warming

historical
warming




historical
warming

historical
TOA
Imbalance

forced
warming

forced
TOA
Imbalance



Defimng the pattern effect

historical +s  forced
. 5 .
warming +s - warming
3é5
2.5
s
1
0.5
0 K
. . 9
historical 75 forced
TOA = 45 TOA
Imbalance

5 mbalance

1
1 —
. o
w 6))

. 1
@ L]

Wm-2

B -2 -2 _ -2 -2
A = AR _ =22Wm = _ 75 WII? 1 = AR _ =3.7Wm~ _ ~1.5 Wm

— AT — ~ 09K 2= AT — ~ 25K K



Defimng the pattern effect

»

historical

5.5 forced
warming

45 warming

(&)

I

w )

historical o | . S B . EanE forced
TOA P N N / - A = 45 TOA
imbalance | S & T 3 o | 5 imbalance

~
O)O_ICO

w

1
1 —
. o
w 6))

-4.5

1
»

-7.5

_ -2
/ll _ AR _ -2.2Wm

1y = AR _ —3.7Wm™>
AT 0.9K

2= AT~ T 25Kk &




Defimng the pattern effect

historical

5.5 forced
warming

warming

historical
TOA
imbalance

forced
4.5 TOA
5 1mbalance

~
0)0_'(0

w

1
1 —

. o
w 6))

-4.5

1
»

-7.5




Defimng the pattern effect

historical
warming

1.8 forced
L. warming

historical
TOA
imbalance

forced
4.5 TOA
5 |mbalance

~
O)O_ICO

w

1
1 —

. o
w 6))

-4.5

1
»

-7.5




historical
warming

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

forced
warming



historical
warming

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

forced
warming



historical
warming

cVAaIllC

Z —>

B
3

NaN
. L] l L]
s . 2 l

Change in net downward
N

radiative flux at TOA (Wm?)

. Years 1-20
Years 21-150

o

1 2 3 4 5 6 7
Change in surface air temperature (K)

AT—>

modified from Andrews et al. 2015

o

forced
warming

K/K



Relevance of the pattern effect: ECS estimation
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Paynter and Frélicher 2015 — variations of feedback parameter, forcing agents
Gregory and Andrews 2016 — decadal variations of feedback parameter
Zhou et al. 2016, 2017 — decadal historical variations, Green’s function
Proistosescu and Huybers 2017 — slow mode reconciles historical and abrupt
Armour et al. 2017 — transfer function of historical to abrupt4x simulations
Ceppi and Gregory 2017 — EIS simple model, detectability in CERES
Andrews et al. 2018b — feedback variations across models in the historical
Marvel et al. 2018 — ECS lower from AMIP < coupled historical < abruptCO2
Silvers et al. 2018 — fleshing out decadal cloud feedbacks

Gregory et al. 2020 — forcing agents and internal variability through historical
Dessler et al. 2020 — pattern effect of internal variability; all sea ice?

Loeb et al. 2020 — models forced with observed SSTs are doing well at TOA
Sherwood et al. 2020 — pattern effect as major constrain to ECS pdf

Lewis and Mauritsen 2021 — pattern effect depends on input dataset

Zhou et al. 2021 — implications for current SSTs to emission commitment
Ceppi and Fueglisthaler 2021 — ENSO pattern effect

Fueglisthaler and Silvers 2021 — peculiar last few decades

Wills et al. 2021 — modes of variability in low vs high latitudes matter for ECS
Dong et al. 2021 — ECS estimates of historical and idealized simulations
Chao et al. 2021 — obs model comparison of feedbacks over obs record
Andrews et al. 2022 — methods, datasets, this is robust, link to OHU, volcanoes
Chao et al. 2022 — unforced pattern effect

Murphy 1995 — effective climate sensitivity, short-wave feedback variations
Senior and Mitchel 2000 — relative SH/NH surface and tropospheric warming
Winton et al. 2010 — ocean heat uptake efficacy

Held et al. 2010 — build efficacy into energy balance model

Armour et al. 2013 — locally constant feedbacks weighted by SSTs

Geoffroy et al. 2013b — spelled out EBM formalism, apply across models
Rose et al. 2014 — flesh out role of feedbacks to OHU in aqua-planet
Andrews at al. 2015 — maybe there’s a kink? across CMIP5 models
Rugenstein et al. 2016 — reproducing coupled model time slices with slab
Stevens et al. 2016 — introduced term pattern effect

Liu et al. 2017/2018a/2018b — GF in SOM

Andrews at al. 2018a — moving focus towards the Pacific, LR and SW CRE
Dong et al. 2019 — relevance of West Pacific

Haugstad et al. 2017 — equivalence of surface fluxes and SST
Bloch-Johnson et al. 2019 — internal variability local-remote connection

Lin et al. 2019 — AMOC influence on TOA through NH surface temperature
Cai et al. 2019 — ECS estimation methods

Dong et al. 2020 — difficulty of applying Green’s functions across models
Newsom et al. 2020 — ocean GF

Dunne et al. 2020 — ECS estimation methods

Winton et al. 2020 — ECS estimation methods and more

Rugenstein et al. 2020 — ECS estimation methods

Bastiaansen et al. 2021 — ECS estimation methods

Rugenstein and Armour 2021 — implications for feedback definitions

Lin et al. 2021 — connecting SOM-GF to SST-GF: SO HU changes tropical SSTs
Tierney et al. 2019, 2020 — pattern effect in LGM/deep-time paleo

Eiselt and Graversen 2022 — feedback change in the Arctic, lapse rate vs other feedbacks
Singh et al. 2022 — ocean heat transport influences radiative feedbacks
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Lin et al. 2021 — connecting SOM-GF to SST-GF: SO HU changes tropical SSTs
Tierney et al. 2019, 2020 — pattern effect in LGM/deep-time paleo

Eiselt and Graversen 2022 — feedback change in the Arctic, lapse rate vs other feedbacks
Singh et al. 2022 — ocean heat transport influences radiative feedbacks
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Murphy 1995 — effective climate sensitivity, short-wave feedback variations
Senior and Mitchel 2000 — relative SH/NH surface and tropospheric warming
Winton et al. 2010 — ocean heat uptake efficacy

Held et al. 2010 — build efficacy into energy balance model

Armour et al. 2013 — locally constant feedbacks weighted by SSTs
Geoffroy et al. 2013b — spelled out EBM formalism, apply across models

Rose et al. 2014 — flesh out role of feedbacks to OHU in aqua-planet

Andrews at al. 2015 — maybe there’s a kink? across CMIP5 models

Rugenstein et al. 2016 — reproducing coupled model time slices with slab
Stevens et al. 2016 — introduced term pattern effect

Liu et al. 2017/2018a/2018b — GF in SOM

Andrews at al. 2018a — moving focus towards the Pacific, LR and SW CRE
Dong et al. 2019 — relevance of West Pacific

Haugstad et al. 2017 — equivalence of surface fluxes and SST

Bloch-Johnson et al. 2019 — internal variability local-remote connection

Lin et al. 2019 — AMOC influence on TOA through NH surface temperature

Cai et al. 2019 — ECS estimation methods

Dong et al. 2020 — difficulty of applying Green’s functions across models
Newsom et al. 2020 — ocean GF

Dunne et al. 2020 — ECS estimation methods

Winton et al. 2020 — ECS estimation methods and more

Rugenstein et al. 2020 — ECS estimation methods

Bastiaansen et al. 2021 — ECS estimation methods

Rugenstein and Armour 2021 — implications for feedback definitions

Lin et al. 2021 — connecting SOM-GF to SST-GF: SO HU changes tropical SSTs
Tierney et al. 2019, 2020 — pattern effect in LGM/deep-time paleo

Eiselt and Graversen 2022 — feedback change in the Arctic, lapse rate vs other feedbacks
Singh et al. 2022 — ocean heat transport influences radiative feedbacks
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Eiselt and Graversen 2022 — feedback change in the Arctic, lapse rate vs other feedbacks
Singh et al. 2022 — ocean heat transport influences radiative feedbacks
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Charney et al. 1979
IPCC FAR Houghton et al. 1990

IPCC SAR Houghton et al. 1995

IPCCTAR Houghton et al. 2001

IPCC AR4 Solomon et al. 2007
IPCC AR5 Stocker et al. 2013
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Andrews et al. 2012 — feedbacks still constant
Otto et al. 2013 — lower ECS evidence from historical

AR5 in 2013— revised ECS estimates down, acknowledged problem

Murphy 1995 — effective climate sensitivity, short-wave feedback variations
Senior and Mitchel 2000 — relative SH/NH surface and tropospheric warming
Winton et al. 2010 — ocean heat uptake efficacy

Held et al. 2010 — build efficacy into energy balance model

Armour et al. 2013 — locally constant feedbacks weighted by SSTs
Geoffroy et al. 2013b — spelled out EBM formalism, apply across models
Rose et al. 2014 — flesh out role of feedbacks to OHU in aqua-planet

Andrews at al. 2015 — maybe there’s a kink? across CMIP5 models

Rugenstein et al. 2016 — reproducing coupled model time slices with slab
Stevens et al. 2016 — introduced term pattern effect

Liu et al. 2017/2018a/2018b — GF in SOM

Andrews at al. 2018a — moving focus towards the Pacific, LR and SW CRE
Dong et al. 2019 — relevance of West Pacific

Haugstad et al. 2017 — equivalence of surface fluxes and SST

Bloch-Johnson et al. 2019 — internal variability local-remote connection

Lin et al. 2019 — AMOC influence on TOA through NH surface temperature

Cai et al. 2019 — ECS estimation methods

Dong et al. 2020 — difficulty of applying Green’s functions across models
Newsom et al. 2020 — ocean GF

Dunne et al. 2020 — ECS estimation methods

Winton et al. 2020 — ECS estimation methods and more

Rugenstein et al. 2020 — ECS estimation methods

Bastiaansen et al. 2021 — ECS estimation methods

Rugenstein and Armour 2021 — implications for feedback definitions

Lin et al. 2021 — connecting SOM-GF to SST-GF: SO HU changes tropical SSTs
Tierney et al. 2019, 2020 — pattern effect in LGM/deep-time paleo

Eiselt and Graversen 2022 — feedback change in the Arctic, lapse rate vs other feedbacks
Singh et al. 2022 — ocean heat transport influences radiative feedbacks



Feedback temperature dependence

N
S~
A

historical warming
internal variability
observations’ based

forced or idealized
warming
mechanisms

S N S Sl ORI NS SN

8 T T T T T T T T T

x  0-150 Years : ‘(;” ® M5: true AToqax
x +  150-300 Years GISS-E2-R o — &0 :
7r O 50-year averages | 5000 yr, -0.02 Wm > Ma3: lin reg
s 1Y R1 -150 ' yr 100-400 (0.99)
50YR51-300
6 wmennnnns {YR21-150 i M1: lin reg
. = = 5YR51-150 — —a% yr 1-150 (0.89)
2120 yr, 0.28 Wm™ - M2: lin reg
yr 20-150 (0.83)
O — M3: range of
CESM 1.0.4 i & ®9 o local tangents o
5900 yr, 0,11 Wm o ¥ 3.0
- @ M7: EBM-¢ fit to = a t cross-terms
yr 1-150 (0.86) o N — AAT - pezeossaca ?
® _ ~ 251 8 — “xach . & residual
MPI-ESM 1.2 —aV— ) MIEEM-EmI < \ X AAT:
1000 yr. 0,48 Wm® — ®0 yr 1-1000 (0.98) (L 20 - § 2x0ch  EEE AATy,
3 ,.‘J.\
—o— M8: 3-exp fit to \é K\’% N\M AATZX, A
yr 1-150 (0.8) ~ 1.5- N\
< N\
MPFESM 1.1 | —ﬁg— -e— M8: 3-exp fit to 2 \
4459 yr, -0.01 Wm b4 yr 1-1000 (0.92) 2 40 é
> 2N
B> M6: lin reg 50yr pra %
o avg 50-300 (0.92) & 0.5~ N\ —
HadCM3L R _ \ =
1000 yr, 0.64 Wm? ] _2o «f VG: Inreg Syr avg & 0.0 - al =
T T T T - yr 50-150 (0.81) c Y R
'c » 4xCO, annual means (experiment 4S) 'a
> o 4xCO, decadal means (experiment 4S) o—0.5
Z o x 4xCO, decadal means (experiment 4R) c
x L X\ + 2xCO; annual means ! R e o it <= 2
= sk o 2xCO, decadal means | A o
=
S ' Oe &
©
g l HadGEM2 &S oY
D - 1328 yr, 0.59 Wm ¥, & (w/o FAMOUS)
§ —
3 i
5 - CNRM-OMS! | * Bloch-dohnson et al. 2021
c i 1850 yr, 1.07 Wm
< .
O _
£ T O
o 1 ECHAMS/MPIOM | S ——%
= - | 1000 yr, 0.73 Wm*® e .
L-C) \ N D
8 10 rT T[T T T[T T r[rrrr?
Change in surface air temperature (K) 4 6 8 10 12

Estimated equilibrium temperature, AT, 4 (K)



Pattern effect of internal Vqria]oility

N
S~
A

historical warming
internal variability
observations’ based

forced or idealized
warming
mechanisms

S N S Sl ORI NS SN

Paynter and Frélicher 2015 — variations of feedback parameter, forcing agents
Gregory and Andrews 2016 — decadal variations of feedback parameter

Zhou et al. 2016, 2017 — decadal historical variations, Green'’s function
Proistosescu and Huybers 2017 — slow mode reconciles historical and abrupt

Armour et al. 2017 — transfer function of historical to abrupt4x simulations Feedback
Ceppi and Gregory 2017 — EIS simple model, detectability in CERES parameter
Andrews et al. 2018b — feedback variations across models in the historical (Wm-2K-1)

Marvel et al. 2018 — ECS lower from AMIP < coupled historical < abruptCO2
Silvers et al. 2018 — fleshing out decadal cloud feedbacks

Gregory et al. 2020 — forcing agents and internal variability through historical -3
Dessler et al. 2020 — pattern effect of internal variability; all sea ice?
Loeb et al. 2020 — models forced with observed SSTs are doing well at TOA -4
Sherwood et al. 2020 — pattern effect as major constrain to ECS pdf
: : . : _5 » a2 z z z . . — . - — . . —
Lewis and Mauritsen 2021 — pattern effect depends on input dataset toen doo0 1820 1940 1960  18E0 SO0 1 1.0 160 1000

Zhou et al. 2021 — implications for current SSTs to emission commitment

Ceppi and Fueglisthaler 2021 — ENSO pattern effect

Fueglisthaler and Silvers 2021 — peculiar last few decades

Wills et al. 2021 — modes of variability in low vs high latitudes matter for ECS
Dong et al. 2021 — ECS estimates of historical and idealized simulations

Chao et al. 2021 — obs model comparison of feedbacks over obs record
Andrews et al. 2022 — methods, datasets, this is robust, link to OHU, volcanoes
Chao et al. 2022 — unforced pattern effect
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Paynter and Frélicher 2015 — variations of feedback parameter, forcing agents
Gregory and Andrews 2016 — decadal variations of feedback parameter

Zhou et al. 2016, 2017 — decadal historical variations, Green’s function
Proistosescu and Huybers 2017 — slow mode reconciles historical and abrupt
Armour et al. 2017 — transfer function of historical to abrupt4x simulations
Ceppi and Gregory 2017 — EIS simple model, detectability in CERES

Andrews et al. 2018b — feedback variations across models in the historical
Marvel et al. 2018 — ECS lower from AMIP < coupled historical < abruptCO2
Silvers et al. 2018 — fleshing out decadal cloud feedbacks

Gregory et al. 2020 — forcing agents and internal variability through historical
Dessler et al. 2020 — pattern effect of internal variability; all sea ice?

Loeb et al. 2020 — models forced with observed SSTs are doing well at TOA
Sherwood et al. 2020 — pattern effect as major constrain to ECS pdf

Lewis and Mauritsen 2021 — pattern effect depends on input dataset

Zhou et al. 2021 — implications for current SSTs to emission commitment
Ceppi and Fueglisthaler 2021 — ENSO pattern effect

Fueglisthaler and Silvers 2021 — peculiar last few decades

Wills et al. 2021 — modes of variability in low vs high latitudes matter for ECS
Dong et al. 2021 — ECS estimates of historical and idealized simulations

Chao et al. 2021 — obs model comparison of feedbacks over obs record
Andrews et al. 2022 — methods, datasets, this is robust, link to OHU, volcanoes
Chao et al. 2022 — unforced pattern effect
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Murphy 1995 — effective climate sensitivity, short-wave feedback variations
Senior and Mitchel 2000 — relative SH/NH surface and tropospheric warming
Winton et al. 2010 — ocean heat uptake efficacy
Held et al. 2010 — build efficacy into energy balance model
Armour et al. 2013 — locally constant feedbacks weighted by SSTs
Geoffroy et al. 2013b — spelled out EBM formalism, apply across models
Rose et al. 2014 — flesh out role of feedbacks to OHU in aqua-planet
Andrews at al. 2015 — maybe there’s a kink? across CMIP5 models
Rugenstein et al. 2016 — reproducing coupled model time slices with slab
Stevens et al. 2016 — introduced term pattern effect
Liu et al. 2017/2018a/2018b — GF in SOM
Andrews at al. 2018a — moving focus towards the Pacific, LR and SW CRE
Dong et al. 2019 — relevance of West Pacific
Haugstad et al. 2017 — equivalence of surface fluxes and SST
Bloch-Johnson et al. 2019 — internal variability local-remote connection
Lin et al. 2019 — AMOC influence on TOA through NH surface temperature
Cai et al. 2019 — ECS estimation methods
Dong et al. 2020 — difficulty of applying Green’s functions across models
Newsom et al. 2020 — ocean GF
Dunne et al. 2020 — ECS estimation methods
Winton et al. 2020 — ECS estimation methods and more
Rugenstein et al. 2020 — ECS estimation methods
Bastiaansen et al. 2021 — ECS estimation methods
- 2021 — implications for feedback definitions
:cting SOM-GF to SST-GF: SO HU changes tropical SSTs
0 — pattern effect in LGM/deep-time paleo
)22 — feedback change in the Arctic, lapse rate vs other feedbacks
3an heat transport influences radiative feedbacks
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Paynter and Frélicher 2015 — variations of feedback parameter, forcing agents
Gregory and Andrews 2016 — decadal variations of feedback parameter

Zhou et al. 2016, 2017 — decadal historical variations, Green’s function
Proistosescu and Huybers 2017 — slow mode reconciles historical and abrupt
Armour et al. 2017 — transfer function of historical to abrupt4x simulations
Ceppi and Gregory 2017 — EIS simple model, detectability in CERES

Andrews et al. 2018b — feedback variations across models in the historical
Marvel et al. 2018 — ECS lower from AMIP < coupled historical < abruptCO2
Silvers et al. 2018 — fleshing out decadal cloud feedbacks

Gregory et al. 2020 — forcing agents and internal variability through historical
Dessler et al. 2020 — pattern effect of internal variability; all sea ice?

Loeb et al. 2020 — models forced with observed SSTs are doing well at TOA
Sherwood et al. 2020 — pattern effect as major constrain to ECS pdf

Lewis and Mauritsen 2021 — pattern effect depends on input dataset

Zhou et al. 2021 — implications for current SSTs to emission commitment
Ceppi and Fueglisthaler 2021 — ENSO pattern effect

Fueglisthaler and Silvers 2021 — peculiar last few decades

Wills et al. 2021 — modes of variability in low vs high latitudes matter for ECS
Dong et al. 2021 — ECS estimates of historical and idealized simulations

Chao et al. 2021 — obs model comparison of feedbacks over obs record
Andrews et al. 2022 — methods, datasets, this is robust, link to OHU, volcanoes
Chao et al. 2022 — unforced pattern effect
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Murphy 1995 — effective climate sensitivity, short-wave feedback variations
Senior and Mitchel 2000 — relative SH/NH surface and tropospheric warming
Winton et al. 2010 — ocean heat uptake efficacy
Held et al. 2010 — build efficacy into energy balance model
Armour et al. 2013 — locally constant feedbacks weighted by SSTs
Geoffroy et al. 2013b — spelled out EBM formalism, apply across models
Rose et al. 2014 — flesh out role of feedbacks to OHU in aqua-planet
Andrews at al. 2015 — maybe there’s a kink? across CMIP5 models
Rugenstein et al. 2016 — reproducing coupled model time slices with slab
Stevens et al. 2016 — introduced term pattern effect
Liu et al. 2017/2018a/2018b — GF in SOM
Andrews at al. 2018a — moving focus towards the Pacific, LR and SW CRE
Dong et al. 2019 — relevance of West Pacific
Haugstad et al. 2017 — equivalence of surface fluxes and SST
Bloch-Johnson et al. 2019 — internal variability local-remote connection
Lin et al. 2019 — AMOC influence on TOA through NH surface temperature
Cai et al. 2019 — ECS estimation methods
Dong et al. 2020 — difficulty of applying Green’s functions across models
Newsom et al. 2020 — ocean GF
Dunne et al. 2020 — ECS estimation methods
Winton et al. 2020 — ECS estimation methods and more
Rugenstein et al. 2020 — ECS estimation methods
Bastiaansen et al. 2021 — ECS estimation methods
- 2021 — implications for feedback definitions
:cting SOM-GF to SST-GF: SO HU changes tropical SSTs
0 — pattern effect in LGM/deep-time paleo
)22 — feedback change in the Arctic, lapse rate vs other feedbacks
3an heat transport influences radiative feedbacks
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