

Carbon Isotope Constraints on Paleo AMOC: Strength vs Depth

Andreas Schmittner, Juan Muglia

US AMOC Science Team Meeting April, 25, 2022

Juan Muglia
Centro para el Estudio de los Sistemas Marinos
CONICET, Puerto Madryn, Argentina

Motivation

Question: How well do carbon isotopes $(\delta^{13}C)$ and radiocarbon) constrain AMOC properties?

Goal: Investigate effects of AMOC strength and depths separately.

Strategy: Compare equilibrium simulations of isotope-enabled model, which fill AMOC strength vs AMOC depth phase space, with sediment data from the Last Glacial Maximum (LGM)

Quaternary Science Reviews Volume 257, 1 April 2021, 106844

doi: 10.1016/j.quascirev.2021.106844

Carbon isotope constraints on glacial Atlantic meridional overturning: Strength vs depth

Juan Muglia ^a △ , Andreas Schmittner ^b

Methods

Climate Model

- Oregon State University version of University of Victoria model (OSU-UVic)
- Model of Ocean Biogeochemistry & Isotopes (MOBI) includes δ¹³C and radiocarbon (Δ¹⁴C)
- LGM Boundary Conditions
- Vary Southern Ocean buoyancy fluxes
- Add freshwater fluxes in North Atlantic

Sediment Data

δ¹³**C** (Peterson et al., 2014)

Radiocarbon (Skinner et al., 2017)

N=246

δ13C

Correlation coefficient depends mostly on AMOC depth.

Correlation Coefficient

δ13C

Correlation coefficient depends mostly on AMOC depth.

RMS error depends mostly on AMOC depth.

Root-Mean-Squared Error

RMS error is normalized by estimated combined model & data errors (0.28 ‰ based on modern data).

An RMSE <~1 indicates consistency between model and data.

δ13C

Correlation coefficient depends mostly on AMOC depth.

RMS error depends mostly on AMOC depth.

Global fit dominated by Atlantic.

Indian-Pacific data seem to slightly favor week AMOC.

Radiocarbon

Correlation coefficient relatively insensitive.

RMS error mostly depends on AMOC depth.

AMOC depth strongly affects Southern Ocean reservoir age!

Effects of AMOC Strength vs Depth on Isotope Distributions

- AMOC strengthening has much less of an effect on both isotopes than AMOC deepening.
- Generally, δ¹³C and radiocarbon response is anti-correlated. (Not a lot of independent information.)
- Deepening affects northern North Atlantic deep waters most.
- Strengthening doesn't affect North Atlantic, but maybe better constrained by South Atlantic data.
- Deepening decreases Southern
 Ocean surface reservoir ages,
 which propagate into the interior
 decreasing the whole ocean
 radiocarbon age

Conclusions

- Carbon isotopes provide strong constraints on AMOC depth, but not on AMOC strength
- LGM AMOC depth was 2,000-2,500 m (500-1,000 m shallower than today)
- LGM AMOC strengths between 8 and 17 Sv are all similarly consistent with the data
- These results are consistent with Gu et al. (2020) CESM study
- Future work: include additional paleo tracers such as Neodymium isotopes and Protactinium Thorium ratios, which may be more sensitive to AMOC strength changes

Thank You

Carbon Storage

More sensitive to AMOC depth than AMOC strength.