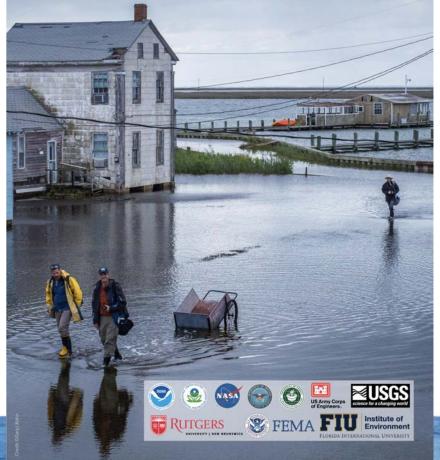
Sea Level and Coastal Flood Risk Predictions

US CLIVAR Summit March 2022

Shane Elipot (POS), John Callahan (PPAI) Jason Wenegrat, Antonietta Capotondi (PSMI)

Context

- 2021 US CLIVAR Research Challenge on climate at the coasts
- 2022 Inter-agency Task Force report
- International activities : e.g. CLIVAR+WCRP Grand Challenge on Sea Level
- 2019 US CLIVAR workshop: Sea Level Hotspots from Florida to Maine


US CLIVAR Science plan addendum and white paper: Research Challenge on climate at the coasts

- Coasts are driven by or respond to variations and changes in the broaderscale coupled atmosphere-ocean-cryosphere system on seasonal to multidecadal scales. Unique challenges and interactions requires a coastspecific US CLIVAR initiative.
- This document takes the example of coastal inundation and flooding, an extreme and often compound event resulting from ocean, atmosphere, and land processes.

2022 Inter-agency task force report

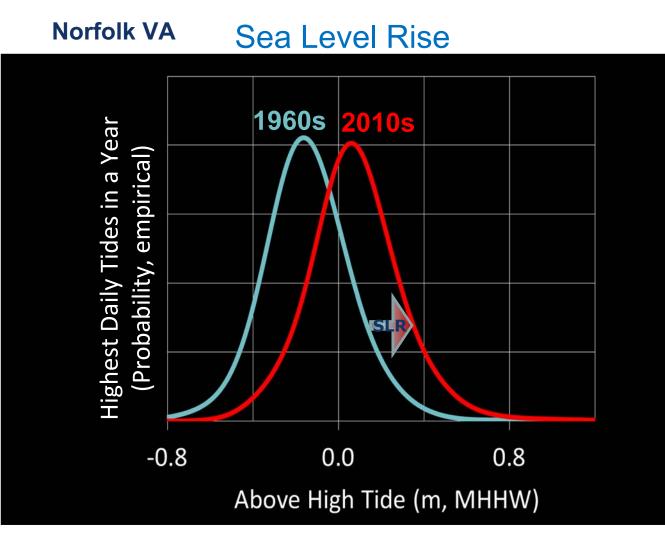
Global and Regional Sea Level Rise Scenarios for the United States

In this session:

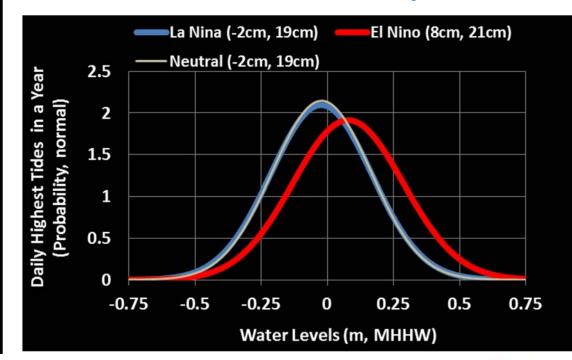
William Sweet NOAA National Ocean Services "2022 Interagency Sea Level Rise and Flood Risk Projections for the U.S. Coastlines"

2019 US CLIVAR Workshop

- What are the efforts already in place and aimed at mitigating the effects of sea level rise and improving overall coastal resilience?
- Where are we with science, and what do we know about the drivers, the uncertainty, and the future of sea level rise?
- What are the **tools and monitoring** resources currently available?
- What are best practices for linking scientific information with decision-making support tools and what are the gaps that need to be addressed?


Workshop Recommendations and Next Steps

Key Research Needs:


- Improve uncertainty quantification of observational and modeling efforts to better support decision-making needs.
- Improve understanding of drivers of sea level variability across timescales from subseasonal to interannual to decadal (e.g., storminess, ocean dynamics, natural climate variation).

Timescale Interactions

Climate Variability

Courtesy of Billy Sweet, NOAA National Ocean Service

Discussion points and questions

- 1. How are low-frequency and large scale **climate modes** influencing highfrequency **sea level processes** and **flooding events predictability**?
- 2. What are the main **challenges and uncertainties** in our assessment and **predictability of sea level changes** and resulting flooding impacts along US coastlines?
- 3. In the context of **coastal inundation**, what are the main challenges and opportunities to connect climate forecasts and projections to **coastal groundwater systems** changes and their **impacts on natural ecosystems and human infrastructures**?

Denis Volkov University of Miami, and NOAA/AOML

"The North Atlantic sea surface height tripole impacts the frequency of flooding events along the U.S. east coast"

William Sweet NOAA National Ocean Services "2022 Interagency Sea Level Rise and Flood Risk Projections for the U.S. Coastlines"

Holly Michael University of Delaware

"Storm surge and sea-level rise effects on groundwater: an overview"

Panel breakout session

Please address the science questions from the perspectives of your panel.

